Prozess Analytische Technologie in der Biotechnologie

Biotechnologische Prozesse sind durch eine enorme Komplexitat von intrazellularen Wechselwirkungen charakterisiert. Prozess Analytische Technologie (PAT) soll nach Vorgabe von den Regulationsbehorden eingesetzt werden, um diese Prozesse wissenschaftlich basiert und robust zu entwickeln. Der Beitrag zeigt die Entwicklungen von PAT-Sensoren fur die Echtzeitmessung und die Notwendigkeit der Integration von PAT-gerechten Daten in Quality by Design (QbD) durch Datenauswertung auf. PAT ist quantitativ und sollte als ein Werkzeug innerhalb von QbD verstanden werden, was auser der Echtzeitmessung auch den Weg mittels Datenauswertung zu kritischen Prozessparametern erlaubt. PAT ist daher nicht zwingend mit dem Kauf teurer Online-Analytik gleichzusetzen. Die Kombination von Sensoren und Auswertemethoden sichert die Durchgangigkeit von der Prozessentwicklung in die industrielle Herstellung und wird die Wissenschaftlichkeit als essentiellen Bestandteil in der Bioprozessentwicklung verankern.

[1]  A. Patra,et al.  Real time detection and quantification of inclusion bodies expressed in Escherichia coli by impedance measurements , 2001, Biotechnology Letters.

[2]  S Gnoth,et al.  Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. , 2007, Journal of biotechnology.

[3]  B Sonnleitner,et al.  Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis , 1986, Biotechnology and bioengineering.

[4]  K. Schügerl,et al.  Progress in monitoring, modeling and control of bioprocesses during the last 20 years. , 2001, Journal of biotechnology.

[5]  G. Stephanopoulos Metabolic fluxes and metabolic engineering. , 1999, Metabolic engineering.

[6]  C. Felice,et al.  Microbial Biomass Estimation , 2005, Critical reviews in biotechnology.

[7]  John Lepore,et al.  PQLI Design Space , 2008, Journal of Pharmaceutical Innovation.

[8]  Oxygen limitation is a pitfall during screening for industrial strains , 2006, Applied Microbiology and Biotechnology.

[9]  Rimvydas Simutis,et al.  Improving the batch-to-batch reproducibility of microbial cultures during recombinant protein production by regulation of the total carbon dioxide production. , 2007, Journal of biotechnology.

[10]  Wen-Teng Wu,et al.  Semi-realtime optimization and control of a fed-batch fermentation system , 2000 .

[11]  Roland Ulber,et al.  Optical sensor systems for bioprocess monitoring , 2003, Analytical and bioanalytical chemistry.

[12]  Reiner Luttmann,et al.  Applications of PAT‐Process Analytical Technology in Recombinant Protein Processes with Escherichia coli , 2008 .

[13]  Rajagopalan Srinivasan,et al.  Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: a case study with rifamycin B fermentation. , 2007, Journal of biotechnology.

[14]  A. Bridges,et al.  Potential of real-time measurement of GFP-fusion proteins. , 2004, Journal of biotechnology.

[15]  Rimvydas Simutis,et al.  Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. , 2006, Journal of biotechnology.

[16]  Jingqi Yuan,et al.  Model‐based specific growth rate control for Pichia pastoris to improve recombinant protein production , 2005 .

[17]  C Herwig,et al.  Know-how and know-why in biochemical engineering. , 2003, Biotechnology advances.

[18]  J. Heijnen,et al.  Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates , 1994, Biotechnology and bioengineering.

[19]  T. Egli,et al.  Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics , 1998, Microbiology and Molecular Biology Reviews.

[20]  Dennis R. Jenke,et al.  Determination of alkaline-earth metals in samples containing a large excess of alkali by ion chromatography , 1987 .

[21]  D. Kyriakidis,et al.  A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli. , 2002, Biotechnology and bioengineering.

[22]  José Manuel Amigo,et al.  Parallel factor analysis combined with PLS regression applied to the on-line monitoring of Pichia pastoris cultures , 2006, Analytical and bioanalytical chemistry.

[23]  N. Thornhill,et al.  Closed‐loop control of fed‐batch cultures of recombinant Escherichia coli using on‐line HPLC , 1994, Biotechnology and bioengineering.

[24]  K. Kiviharju,et al.  Biomass measurement online: the performance of in situ measurements and software sensors , 2008, Journal of Industrial Microbiology & Biotechnology.

[25]  Jens Nielsen,et al.  Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. , 2008, FEMS yeast research.

[26]  G Stephanopoulos,et al.  After a decade of progress, an expanded role for metabolic engineering. , 2001, Advances in biochemical engineering/biotechnology.

[27]  Urs von Stockar,et al.  Methodology for real-time, multianalyte monitoring of fermentations using an in-situ mid-infrared sensor. , 2003, Biotechnology and bioengineering.

[28]  Franz Clementschitsch,et al.  Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. , 2005, Journal of biotechnology.

[29]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[30]  Karl Bayer,et al.  Improvement of bioprocess monitoring: development of novel concepts , 2006, Microbial cell factories.

[31]  Rimvydas Simutis,et al.  Control of cultivation processes for recombinant protein production: a review , 2008, Bioprocess and biosystems engineering.

[32]  L. Olsson,et al.  Chemometric analysis of in‐line multi‐wavelength fluorescence measurements obtained during cultivations with a lipase producing Aspergillus oryzae strain , 2007, Biotechnology and bioengineering.

[33]  Ana P Ferreira,et al.  Study of the application of multiway multivariate techniques to model data from an industrial fermentation process. , 2007, Analytica chimica acta.

[34]  U. von Stockar,et al.  A small metabolic flux model to identify transient metabolic regulations in Saccharomyces cerevisiae , 2002 .

[35]  Joaquim P Cardoso,et al.  The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems. , 2008, Talanta.

[36]  Govind Rao,et al.  Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring , 2001 .

[37]  G. Stephanopoulos,et al.  Application of macroscopic balances to the identification of gross measurement errors , 1983, Biotechnology and bioengineering.

[38]  Mel Koch,et al.  Process analytical chemistry. , 2011, Analytical chemistry.

[39]  L. Blank,et al.  Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint‐based modeling and experimental verification , 2008, Biotechnology and bioengineering.

[40]  Bernhard Sonnleitner,et al.  On-line capillary gas chromatography with automated liquid sampling, a powerful tool in biotechnology , 1991 .

[41]  Rimvydas Simutis,et al.  Estimation of biomass concentrations in fermentation processes for recombinant protein production , 2006, Bioprocess and biosystems engineering.

[42]  P. Ferrer,et al.  Rivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris , 2007 .

[43]  Christoph Herwig,et al.  Quantitative analysis of the oxidative metabolism in HXK2- and REG1-deletion mutants of Saccharomyces cerevisiae , 2002 .

[44]  Alvin W. Nienow,et al.  The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes , 2004, Journal of Industrial Microbiology and Biotechnology.

[45]  K. Bayer,et al.  Fast Quantification of Recombinant Protein Inclusion Bodies within Intact Cells by FT‐IR Spectroscopy , 2008, Biotechnology progress.

[46]  C Herwig,et al.  On-line stoichiometry and identification of metabolic state under dynamic process conditions. , 2001, Biotechnology and bioengineering.