Cognitive consonance: complex brain functions in the fruit fly and its relatives

[1]  Karl von Frisch,et al.  Über die "Sprache" der bienen : Eine tierpsychologische Untersuchung , 1923 .

[2]  Koehler ber die ?Sprache? der Bienen: Eine tierpsychologische Untersuchung , 1923 .

[3]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. W. Siegel,et al.  Conditioned responses in courtship behavior of normal and mutant Drosophila. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[6]  Miriam Lehrer,et al.  Bees perceive illusory colours induced by movement , 1987, Vision Research.

[7]  G. E. Alexander,et al.  Preparation for movement: neural representations of intended direction in three motor areas of the monkey. , 1990, Journal of neurophysiology.

[8]  R. Menzel,et al.  Do insects have cognitive maps? , 1990, Annual review of neuroscience.

[9]  G Tononi,et al.  Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  David C. O'Carroll,et al.  Insect perception of illusory contours , 1992 .

[11]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[12]  F. Barth,et al.  Two visual systems in one brain: Neuropils serving the principal eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.

[13]  F. Barth,et al.  Two visual systems in one brain: Neuropils serving the secondary eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.

[14]  T. Préat,et al.  Genetic dissection of consolidated memory in Drosophila , 1994, Cell.

[15]  M Heisenberg,et al.  Visual pattern memory without shape recognition. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  W M Jenkins,et al.  A primate genesis model of focal dystonia and repetitive strain injury , 1996, Neurology.

[17]  R. Menzel,et al.  Symmetry perception in an insect , 1996, Nature.

[18]  R. Jackson,et al.  Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey , 1997, Animal Behaviour.

[19]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[20]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals , 1998, The Journal of comparative neurology.

[21]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[22]  Philip J. Bushnell,et al.  Behavioral approaches to the assessment of attention in animals , 1998, Psychopharmacology.

[23]  B. Tabashnik,et al.  Development time and resistance to Bt crops , 1999, Nature.

[24]  R. Menzel Memory dynamics in the honeybee , 1999, Journal of Comparative Physiology A.

[25]  Michael S. Tarsitano,et al.  Scanning and route selection in the jumping spider Portia labiata , 1999, Animal Behaviour.

[26]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[27]  K. Siwicki,et al.  Mushroom Body Ablation Impairs Short-Term Memory and Long-Term Memory of Courtship Conditioning in Drosophila melanogaster , 1999, Neuron.

[28]  M. Mizunami,et al.  Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies , 1999, Journal of Comparative Physiology.

[29]  H. Reichert,et al.  Conserved genetic programs in insect and mammalian brain development , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  R. Menzel,et al.  Associative learning modifies neural representations of odors in the insect brain , 1999, Nature Neuroscience.

[31]  D. P. Russell,et al.  Increased Synchronization of Neuromagnetic Responses during Conscious Perception , 1999, The Journal of Neuroscience.

[32]  S. Sachse,et al.  Calcium responses to pheromones and plant odours in the antennal lobe of the male and female moth Heliothis virescens , 2000, Journal of Comparative Physiology A.

[33]  R. Menzel,et al.  Two spatial memories for honeybee navigation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[35]  R. Menzel Searching for the memory trace in a mini-brain, the honeybee. , 2001, Learning & memory.

[36]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[37]  G. Giudice CONSERVED CELLULAR AND MOLECULAR MECHANISMS IN DEVELOPMENT , 2001, Cell biology international.

[38]  M. Srinivasan,et al.  The concepts of ‘sameness’ and ‘difference’ in an insect , 2001, Nature.

[39]  B. Brembs,et al.  Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator. , 2001, The Journal of experimental biology.

[40]  Kenneth O. Johnson,et al.  Synchrony: a neuronal mechanism for attentional selection? , 2002, Current Opinion in Neurobiology.

[41]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[42]  Shaowen Bao,et al.  Disruption of primary auditory cortex by synchronous auditory inputs during a critical period , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[44]  M. Heisenberg,et al.  Evolutionary significance of courtship conditioning in Drosophila melanogaster , 2002, Animal Behaviour.

[45]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[46]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[47]  M. Giurfa Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain , 2003, Current Opinion in Neurobiology.

[48]  P. Fries,et al.  Is synchronized neuronal gamma activity relevant for selective attention? , 2003, Brain Research Reviews.

[49]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[50]  R. Greenspan,et al.  Uncoupling of Brain Activity from Movement Defines Arousal States in Drosophila , 2004, Current Biology.

[51]  A. Robichon,et al.  Cooperation between Drosophila flies in searching behavior , 2004, Genes, brain, and behavior.

[52]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[53]  J. Hildebrand,et al.  Learning modulates the ensemble representations for odors in primary olfactory networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Martin Giurfa,et al.  Local-feature assembling in visual pattern recognition and generalization in honeybees , 2004, Nature.

[55]  G. Edelman,et al.  Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device. , 2004, Cerebral cortex.

[56]  Sudhir Kumar,et al.  Comparative Genomics in Eukaryotes , 2005 .

[57]  R. Menzel,et al.  Honey bees navigate according to a map-like spatial memory. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.