Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation

The abundance of low-temperature waste heat necessitates the development of reliable and scalable thermal-to-electric energy conversion technology. The thermoelectric device is one viable option. Commercially available Bi2Te3-based materials are optimized for near room temperature cooling applications. Currently there are no mass-produced materials available for 400 K to 650 K thermoelectric power generation. We report the successful realization of high performance n-type Bi2(Te1−xSex)3-based materials for the temperature range of interest, using a commercial zone-melting technique. The introduction of Se effectively increases the band gap, which significantly suppresses the “turn-over” in Seebeck coefficient and the appearance of a pronounced bipolar effect, shifting the corresponding temperature of the optimum thermoelectric figure of merit ZT towards a higher temperature range. Furthermore, we demonstrate that the electron concentration of Bi2(Te0.5Se0.5)3 can be effectively adjusted by iodine doping. The samples with electron concentrations between 3 × 1019 and 4.5 × 1019 cm−3 display optimal thermoelectric performances. The highest ZT value reaches 0.86 at 600 K for the sample with the electron concentration of 4.0 × 1019 cm−3, whose average ZT between 400 K and 640 K is 0.8, making this scalable zone-melted low-Te content Bi2(Te0.5Se0.5)3 compound a promising candidate for low-temperature power generation.

[1]  F. A. Dahlen,et al.  Brittle frictional mountain building: 2. Thermal structure and heat budget , 1989 .

[2]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[3]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[4]  Shanyu Wang,et al.  Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs , 2011 .

[5]  L. Muldawer,et al.  Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys , 1960 .

[6]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[7]  G. J. Snyder,et al.  Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery , 2011 .

[8]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[9]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[10]  Cheng-Ting Hsu,et al.  Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators , 2011 .

[11]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[12]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[13]  Jing Liu,et al.  Liquid metal based thermoelectric generation system for waste heat recovery , 2011 .

[14]  I. Mertig,et al.  Electronic structure and transport anisotropy of Bi2Te3and Sb2Te3 , 2011, 1109.0186.

[15]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[16]  K. Novoselov,et al.  Effect of a high-kappa environment on charge carrier mobility in graphene. , 2008, Physical review letters.

[17]  David Michael Rowe,et al.  High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation , 2002 .

[18]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[19]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[20]  L. Stil’bans,et al.  Physical problems of thermoelectricity , 1959 .

[21]  Baoling Huang,et al.  Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .

[22]  George S. Nolas,et al.  Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites , 2009 .

[23]  X. Dai,et al.  First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3 , 2010, 1003.5082.

[24]  H. Goldsmid The Thermal Conductivity of Bismuth Telluride , 1956 .

[25]  F. Yin,et al.  Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules , 2006 .

[26]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[27]  P. Larson,et al.  Electronic structure of Bi 2 X 3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies , 2002 .

[28]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[29]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[30]  Y. P. Chen,et al.  Thermal expansion coefficients of Bi2Se3 and Sb2Te3 crystals from 10 K to 270 K , 2011, 1112.1608.

[31]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[32]  Shanyu Wang,et al.  High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator , 2010 .

[33]  Jie Shen,et al.  The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys , 2011 .

[34]  Ji-Hui Yang,et al.  Automotive Applications of Thermoelectric Materials , 2009 .

[35]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[36]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[37]  D. Greenaway,et al.  Band structure of bismuth telluride, bismuth selenide and their respective alloys , 1965 .

[38]  H. Scherrer,et al.  Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization , 1988 .

[39]  Pierre F. P. Poudeu,et al.  Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 with Semimetal Nanoinclusions , 2011 .

[40]  Katsutoshi Ono,et al.  Thermoelectric power generation: Converting low-grade heat into electricity , 1998 .

[41]  P. Srivastava,et al.  Electronic structure, optical properties and Compton profiles of Bi2S3 and Bi2Se3 , 2012 .

[42]  L. Forró,et al.  HALL EFFECT AND MAGNETORESISTANCE OF CARBON NANOTUBE FILMS , 1997 .

[43]  George Papadakis,et al.  Low­grade heat conversion into power using organic Rankine cycles - A review of various applications , 2011 .

[44]  Terry M. Tritt,et al.  Holey and Unholey Semiconductors , 1999, Science.

[45]  Sung‐Jin Kim,et al.  Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement , 2011 .

[46]  J. Bisquert,et al.  Limitation of the mobility of charge carriers in a nanoscaled heterogeneous system by dynamical Coulomb screening , 2003 .

[47]  Khalid M. Saqr,et al.  Thermal design of automobile exhaust based thermoelectric generators: Objectives and challenges , 2008 .

[48]  Wei Li,et al.  Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO , 2011 .

[49]  Chih Wu Analysis of waste-heat thermoelectric power generators , 1996 .

[50]  N. V. Kolomoets,et al.  Electrical and thermoelectric properties of 90% Bi2Te3-5% Sb2Te3-5% Sb2Se3 single crystals doped with SbI3 , 1998 .