Introduction to Integrated Predictive Modeling

[1]  L. Cisneros-Zevallos,et al.  Thermal Inactivation Kinetics of Peroxidase and Lipoxygenase from Broccoli, Green Asparagus and Carrots , 2002 .

[2]  W. D. Ray,et al.  Statistics for Experiments. An Introduction to Design, Data Analysis and Model Building , 1979 .

[3]  Jorge C. Oliveira,et al.  Optimal experimental design for estimating the kinetic parameters of the Bigelow model , 1997 .

[4]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[5]  A H Geeraerd,et al.  Structural model requirements to describe microbial inactivation during a mild heat treatment. , 2000, Journal of food microbiology.

[6]  Fernanda A. R. Oliveira,et al.  A study on the accuracy and precision of external mass transfer and diffusion coefficients jointly estimated from pseudo-experimental simulated data , 1998 .

[7]  Michael L. Johnson,et al.  [16] Nonlinear least-squares analysis , 1985 .

[8]  W. D. Bigelow,et al.  The logarithmic nature of thermal death time curves , 1921 .

[9]  Jorge C. Oliveira,et al.  Application of D-optimal design for determination of the influence of water content on the thermal degradation kinetics of ascorbic acid at low water contents , 1998 .

[10]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[11]  M. Boekel,et al.  Statistical aspects of kinetic modeling for food science problems. , 1996 .

[12]  M. Peleg,et al.  Estimation of the survival curve of Listeria monocytogenes during non-isothermal heat treatments , 2001 .

[13]  Warren E. Stewart,et al.  Parameter estimation from multiresponse data , 1992 .

[14]  F. Malcata,et al.  Starting D-optimal designs for batch kinetics studies of enzyme-catalyzed reactions in the presence of enzyme deactivation. , 1992, Biometrics.

[15]  Teresa R. S. Brandão,et al.  Integrated approach on solar drying, pilot convective drying and microstructural changes , 2005 .

[16]  I. Leguerinel,et al.  Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores. , 2005, International journal of food microbiology.

[17]  A. S. Edmondson,et al.  Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A , 1999 .

[18]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[19]  Jan Van Impe,et al.  Integrated approach on heat transfer and inactivation kinetics of microorganisms on the surface of foods during heat treatments—software development , 2006 .

[20]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[21]  Fernanda A. R. Oliveira,et al.  Optimal experimental design for estimating the kinetic parameters of processes described by the first-order Arrhenius model under linearly increasing temperature profiles , 2000 .

[22]  C. Tong,et al.  Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC , 1996 .

[23]  George E. P. Box,et al.  The Bayesian estimation of common parameters from several responses , 1965 .

[24]  J F Van Impe,et al.  Dynamic mathematical model to predict microbial growth and inactivation during food processing , 1992, Applied and environmental microbiology.

[25]  Fernanda A. R. Oliveira,et al.  Design of experiments for improving the precision in the estimation of diffusion parameters under isothermal and non‐isothermal conditions , 2001 .

[26]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[27]  T. A. Roberts,et al.  The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. , 1987, The Journal of applied bacteriology.

[28]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[29]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[30]  B. Wedzicha,et al.  Food chemistry: Acrylamide is formed in the Maillard reaction , 2002, Nature.

[31]  D. Lund,et al.  DETERMINING KINETIC PARAMETERS FOR THERMAL INACTIVATION OF HEATRESISTANT AND HEAT‐ LABILE ISOZYMES FROM THERMAL DESTRUCTION CURVES , 1978 .

[32]  I. Leguerinel,et al.  Modeling combined effects of temperature and pH on heat resistance of spores by a linear-Bigelow equation , 1998 .

[33]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[34]  Fernanda A. R. Oliveira,et al.  Stochastic approach to the modelling of water losses during osmotic dehydration and improved parameter estimation , 2001 .

[35]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.

[36]  Cristina L. M. Silva,et al.  Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale) , 2006 .

[37]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[38]  W. H. Carter,et al.  Use of a Modified Gompertz Equation to Model Nonlinear Survival Curves for Listeria monocytogenes Scott A. , 1995, Journal of food protection.

[39]  Kristel Bernaerts,et al.  Concepts and tools for predictive modeling of microbial dynamics. , 2004, Journal of food protection.

[40]  S. Condón,et al.  Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication , 1994 .

[41]  M. Boulanger,et al.  Experimental Design for a Class of Accelerated Degradation Tests , 1994 .

[42]  I. Leguerinel,et al.  Model for Combined Effects of Temperature, pH and Water Activity on Thermal Inactivation of Bacillus cereus Spores , 1998 .

[43]  Cristina L. M. Silva,et al.  Modelling kinetics of thermal degradation of colour in peach puree , 1999 .

[44]  Robert L. Buchanan,et al.  Thermal destruction ofListeria monocytogenes in liver sausage slurry , 1991 .

[45]  T. A. Roberts,et al.  Modeling bacterial growth responses , 1993, Journal of Industrial Microbiology.

[46]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[47]  J. R. Esty,et al.  The heat resistance of the spores of B. botulinus and allied anaerobes. XI , 1922 .