Estimation and Modeling of Actual Numerical Errors in Volume Rendering

In this paper we study the comprehensive effects on volume rendered images due to numerical errors caused by the use of finite precision for data representation and processing. To estimate actual error behavior we conduct a thorough study using a volume renderer implemented with arbitrary floating‐point precision. Based on the experimental data we then model the impact of floating‐point pipeline precision, sampling frequency and fixed‐point input data quantization on the fidelity of rendered images. We introduce three models, an average model, which does not adapt to different data nor varying transfer functions, as well as two adaptive models that take the intricacies of a new data set and transfer function into account by adapting themselves given a few different images rendered. We also test and validate our models based on new data that was not used during our model building.

[1]  Samuel P. Uselton,et al.  Metrics and generation specifications for comparing volume-rendered images , 1999, Comput. Animat. Virtual Worlds.

[2]  Xiaoru Yuan,et al.  HDR VolVis: high dynamic range volume visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Klaus Mueller,et al.  Squeeze: numerical-precision-optimized volume rendering , 2004, Graphics Hardware.

[4]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[5]  J. Edward Swan,et al.  Proceedings of the conference on Visualization '02 , 2001 .

[6]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[7]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[8]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[9]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[10]  Wayne H. Enright,et al.  Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.

[11]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[12]  Klaus Mueller,et al.  A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.

[13]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[14]  Thrasyvoulos N. Pappas,et al.  Perceptual criteria for image quality evaluation , 2005 .

[15]  Michael E. Goss,et al.  Opacity-weighted color interpolation for volume sampling , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[16]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[17]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[18]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[19]  Martin Kraus,et al.  Pre-Integrated Volume Rendering , 2005, The Visualization Handbook.

[20]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[21]  Peter Williams,et al.  Metrics and generation specifications for comparing volume‐rendered images , 1999 .

[22]  Daniel Weiskopf,et al.  A Spectral Analysis of Function Composition and its Implications for Sampling in Direct Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  Alex T. Pang,et al.  Extended Specifications and Test Data Sets for Data Level Comparisons of Direct Volume Rendering Algorithms , 2001, IEEE Trans. Vis. Comput. Graph..

[24]  James Arvo,et al.  Controlled precision volume integration , 1992, VVS.

[25]  Klaus Mueller,et al.  Conjoint Analysis to Measure the Perceived Quality in Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[26]  Nicholas J. Higham,et al.  Accuracy and stability of numerical algorithms, Second Edition , 2002 .