Plantwide Control Design Based on the Control Allocation Approach

In this work the control allocation (CA) philosophy is considered in order to propose a plantwide control (PWC) design methodology. For medium/large-scale processes for which the number of actuators is greater than the number of controlled variables, a CA-based strategy can be used to distribute the total control effort among the actuators, with some attractive features. First, the CA module can explicitly handle (i) constraints on inputs (typically actuator position and rate limits) and (ii) additional control objectives (e.g., to penalize the actuators control energy). Second, CA has the potential to provide (actuator) fault tolerance without considering a control structure reconfiguration. In this paper, a decentralized control structure is proposed for computing the total control effort, which is implemented with conventional single-input single-output PID controllers. In addition, a CA module is configured and two alternative algorithms are compared, namely, (i) generalized inverse plus simple satura...

[1]  P. J. Campo,et al.  Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain , 1994, IEEE Trans. Autom. Control..

[2]  Tor Arne Johansen,et al.  Control allocation - A survey , 2013, Autom..

[3]  Pablo A. Marchetti,et al.  Multivariable Control Structure Design Based on Mixed-Integer Quadratic Programming , 2017 .

[4]  Thomas J. McAvoy A methodology for screening level control structures in plantwide control systems , 1998 .

[5]  Masato Abe,et al.  How the four wheels should share forces in an optimum cooperative chassis control , 2004 .

[6]  David A. R. Zumoffen,et al.  Oversizing analysis in plant-wide control design for industrial processes , 2013, Comput. Chem. Eng..

[7]  Daniel E. Rivera,et al.  Internal Model Control , 2010, Encyclopedia of Machine Learning.

[8]  J. Jim Zhu,et al.  Guidance, Navigation, and Control System Design for Tripropeller Vertical-Take-Off-and-Landing Unmanned Air Vehicle , 2009 .

[9]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[10]  Gintaras V. Reklaitis,et al.  Process systems engineering: From Solvay to modern bio- and nanotechnology.: A history of development, successes and prospects for the future , 2011 .

[11]  Rodrigo Juliani Correa de Godoy,et al.  Plantwide Control: A Review of Design Techniques, Benchmarks, and Challenges , 2017 .

[12]  Sigurd Skogestad,et al.  An industrial and academic perspective on plantwide control , 2011, Annu. Rev. Control..

[13]  David Zumoffen,et al.  Plant-wide control strategy applied to the Tennessee Eastman process at two operating points , 2011, Comput. Chem. Eng..

[14]  Marta Basualdo,et al.  Fault-tolerant control design for safe production of hydrogen from bio-ethanol , 2014 .

[15]  Marc Bodson,et al.  Constrained quadratic programming techniques for control allocation , 2006, IEEE Transactions on Control Systems Technology.

[16]  Marc Bodson,et al.  Evaluation of optimization methods for control allocation , 2001 .

[17]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[18]  A. Casavola,et al.  Fault‐tolerant adaptive control allocation schemes for overactuated systems , 2010 .

[19]  D. A. R. Zumoffen,et al.  Decentralized plantwide control strategy for large-scale processes. Case study: Pulp mill benchmark problem , 2013, Comput. Chem. Eng..

[20]  Yi Cao,et al.  Branch and bound method for multiobjective pairing selection , 2010, Autom..

[21]  M. S. Basualdo,et al.  Smart Investment for Redundancies Selection Integrated to Reconfigurable Fault-Tolerant Control Design , 2016 .

[22]  R. Outbib,et al.  Nominal Controller Design Based on Decentralized Integral Controllability in the Framework of Reconfigurable Fault-Tolerant Structures , 2015 .

[23]  G. P. Rangaiah,et al.  Performance Assessment of Plantwide Control Systems of Industrial Processes , 2007 .

[24]  Gade Pandu Rangaiah,et al.  Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front obtained by Multiobjective Optimization , 2017 .

[25]  Daniel Eduardo Rivera Flores UNA METODOLOGÍA PARA LA IDENTIFICACIÓN INTEGRADA CON EL DISEÑO DE CONTROLADORES IMC-PID , 2007 .

[26]  Yaman Arkun,et al.  A general method to calculate input-output gains and the relative gain array for integrating processes , 1990 .

[27]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[28]  Joel M. Esposito,et al.  Comprehensive framework for tracking control and thrust allocation for a highly overactuated autonomous surface vessel , 2011, J. Field Robotics.

[29]  Mahdi Sharifzadeh,et al.  Integration of process design and control: A review , 2013 .

[30]  Carlos E. Garcia,et al.  Internal model control. 2. Design procedure for multivariable systems , 1985 .

[31]  Ola Härkegård,et al.  Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation , 2002, CDC.

[32]  Miroslav Hodak,et al.  Recent developments and applications of the real-space multigrid method , 2008 .

[33]  Torkel Glad,et al.  Resolving actuator redundancy - optimal control vs. control allocation , 2005, Autom..

[34]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[35]  David Zumoffen,et al.  Plant-wide control design based on steady-state combined indexes. , 2016, ISA transactions.