Polarimetric Radarsat-2 wetland classification using the Touzi decomposition: case of the Lac Saint-Pierre Ramsar wetland

Wetlands play a key role in regional and global environments and are linked to climate change, water quality, and hydrological and carbon cycles. They also contribute to wildlife habitat and biodiversity and can act as indicators of overall environmental health. Unfortunately, wetlands continue to be under threat. There is an immediate need for improved mapping and monitoring of wetlands to better manage and protect these sensitive areas. Recently, the Touzi decomposition was introduced and proved very promising for wetland characterization using polarimetric airborne (Convair-580) SAR data. The purpose of this study is to assess the Touzi incoherent target-scattering decomposition (ICTD) for wetland classification using polarimetric Radarsat-2 (RS2) data collected over the RAMSAR wetland site in Lac Saint-Pierre, Canada. In particular, the sensitivity of the ICTD parameters to seasonal evolution of marsh and swamp scattering is discussed and demonstrated. The intent is to show that the dominant scattering type magnitude (αs1) and phase (Φs1), and the dominant (η1) and lowest scattering eigenvalues (η3), lead to an effective characterization of the various backscattering mechanisms of the wetland plant species. The ICTD parameters form the basis of a new hierarchical classification that is efficient for wetland classification. The use of multitemporal information obtained from multidate RS2 acquisitions between April and September allows an accurate wetland classification. The RS2 polarimetric classification is then compared with a supervised maximum-likelihood classification using a pair of Landsat-5 images.

[1]  S. Cloude Group theory and polarisation algebra , 1986 .

[2]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .

[3]  S. Q. Huang CHANGE MECHANISM ANALYSIS AND INTEGRATION CHANGE DETECTION METHOD ON SAR IMAGES , 2005 .

[4]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[5]  C. Hudon Impact of water level fluctuations on St. Lawrence River aquatic vegetation , 1997 .

[6]  Junhua Li,et al.  A rule-based method for mapping Canada's wetlands using optical, radar and DEM data , 2005 .

[7]  T. Asaeda,et al.  Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach. , 2005, Annals of botany.

[8]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Ridha Touzi,et al.  Wetland Characterization using Polarimetric RADARSAT-2 Capability , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[10]  Ridha Touzi,et al.  Forest type discrimination using calibrated C-band polarimetric SAR data , 2004 .

[11]  R. Carignan,et al.  An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales , 2003 .

[12]  R. Touzi,et al.  Polarimetric SAR urban classification using the Touzi target scattering decomposition , 2011 .

[13]  R. Touzi Speckle effect on polarimetric target scattering decomposition of SAR imagery , 2007 .

[14]  D. Lu,et al.  Change detection techniques , 2004 .

[15]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[16]  Shaun Quegan,et al.  Radar Remote Sensing , 1999 .

[17]  A. Bouchard,et al.  Plant Standing Crop and Productivity Relations in a Scirpus‐Equisetum Wetland , 1976 .

[18]  S. Cloude Uniqueness of Target Decomposition Theorems in Radar Polarimetry , 1992 .

[19]  Fawwaz T. Ulaby,et al.  Land-cover classification and estimation of terrain attributes using synthetic aperture radar , 1995 .

[20]  Alain Pietroniro,et al.  Towards operational monitoring of a northern wetland using geomatics-based techniques , 2005 .

[21]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[22]  Lorenzo Bruzzone,et al.  An advanced system for the automatic classification of multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Maycira Costa,et al.  Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucuruí reservoir, Brazil , 2002 .

[24]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[25]  S. Drury Radar remote sensing , 1987 .

[26]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Lawrence W. Martz,et al.  Multisensor Hydrologic Assessment of a Freshwater Wetland , 2001 .

[28]  Ridha Touzi,et al.  Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Taha B. M. J. Ouarda,et al.  Détection et classification de tourbières ombrotrophes du Québec à partir d'images RADARSAT-1 , 2003 .

[30]  Ridha Touzi,et al.  Optimum RADARSAT-1 configurations for wetlands discrimination: a case study of the Mer Bleue peat bog , 2007 .

[31]  Richard A. Fournier,et al.  An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada , 2007 .

[32]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[33]  M. Noernberg,et al.  The use of biophysical indices and coefficient of variation derived from airborne synthetic aperture radar for monitoring the spread of aquatic vegetation in tropical reservoirs , 1999 .

[34]  Richard A. Fournier,et al.  Towards a strategy to implement the Canadian Wetland Inventory using satellite remote sensing , 2007 .

[35]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[36]  J. Klopatek,et al.  Primary productivity of emergent macrophytes in a Wisconsin freshwater marsh ecosystem , 1978 .

[37]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[38]  Thuy Le Toan,et al.  Agriculture classification using POLSAR data , 2005 .

[39]  D. Giblin,et al.  CONTROLLING PHALARIS ARUNDINACEA (REED CANARYGRASS) WITH LIVE WILLOW STAKES: A DENSITY-DEPENDENT RESPONSE , 2006 .

[40]  Nicolas Baghdadi,et al.  Evaluation of C-band SAR data for wetlands mapping , 2001 .

[41]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[42]  Jakob J. van Zyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993, Optics & Photonics.

[43]  P. Gagnon,et al.  Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Québec, Canada) , 2005 .

[44]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..