Low mountain ranges: summit traps for montane freshwater species under climate change

Global climate change (GCC) is expected to lead to massive loss of global biodiversity in the alpine regions of mountain ranges. Studies on the potential effects of GCC on low mountain areas remain sparse, however, despite the high conservation value of these areas as biodiversity refugia. We chose a species distribution modeling approach to assess potential GCC impacts on the future distributions of montane freshwater invertebrates under two different greenhouse gas scenarios and three averaged general circulation models. For this, ensemble models consisting of six algorithms [generalized linear model (GLM), generalized boosted model (GBM), generalized additive model (GAM), classification tree analysis (CTA), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS)] were applied to project areas of 23 cold-stenothermic aquatic insects from montane regions of Central Europe. We found an average loss of 70–80% of the potential distribution for the study species until 2080, depending on the underlying Intergovernmental Panel on Climate Change scenario. Species distribution ranges below 1000 m above sea level were found to decrease by up to ~96% according to the severest greenhouse gas emission scenario. While the Alps remain the single main refugium under the A2a greenhouse gas emission scenario, the more moderate climate scenario B2a shows fragmented potential persistence of montane insects in some low mountain ranges. The results show that montane freshwater assemblages in low mountain ranges are particularly threatened by ongoing GCC. As vertical dispersal is limited by elevational restriction, low mountain ranges may act as summit traps under GCC. We thus propose that GCC will lead to the extinction of several species and unique genetic lineages of postglacial relict species, resulting in a significant decline in Central European fauna.

[1]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[2]  A. Weaver,et al.  The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate , 2000 .

[3]  B. Villeneuve,et al.  Relationships between ecological and chemical status of surface waters , 2007 .

[4]  G. Likens,et al.  Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors , 2005 .

[5]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[6]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[7]  T. Hothorn,et al.  Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators , 2010 .

[8]  T. Schmitt,et al.  Biogeography meets conservation: the genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermuller, 1775) , 2010 .

[9]  G. Grabherr,et al.  Climate effects on mountain plants , 1994, Nature.

[10]  M. Araújo,et al.  Reducing uncertainty in projections of extinction risk from climate change , 2005 .

[11]  D. Roy,et al.  The distributions of a wide range of taxonomic groups are expanding polewards , 2006 .

[12]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[13]  D. Gutiérrez,et al.  Changes to the elevational limits and extent of species ranges associated with climate change. , 2005, Ecology letters.

[14]  Angela Lee,et al.  Perspectives on … Environmental Systems Research Institute, Inc , 1997 .

[15]  P. Rundel,et al.  Modelling the distribution of a threatened habitat: the California sage scrub , 2009 .

[16]  C. Zamora‐Muñoz,et al.  Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences , 2009, Aquatic Sciences.

[17]  T. D. Mitchell,et al.  Ecosystem Service Supply and Vulnerability to Global Change in Europe , 2005, Science.

[18]  Raimo Virkkala,et al.  Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions , 2009, Biological reviews of the Cambridge Philosophical Society.

[19]  V. Sládeček Braukmann, U.: Zoozönologische und saprobiologische Beiträge zu einer allgemeinen regionalen Bachtypologie. – Arch. Hydrobiol./Ergebn. Limnol. 26 (1987), 1–355, Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung, Broschiert, Preis nicht angegeben , 1989 .

[20]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[21]  Mark V. Lomolino,et al.  Elevation gradients of species‐density: historical and prospective views , 2001 .

[22]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[23]  Martin Beniston,et al.  Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps , 2006, Hydrobiologia.

[24]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[25]  A. Milner,et al.  Mayfly production in a New Zealand glacial stream and the potential effect of climate change , 2008, Hydrobiologia.

[26]  U. Braukmann Zoozönologische und saprobiologische Beiträge zu einer - allgemeinen regionalen Bachtypologie , 1997 .

[27]  R. Nichols,et al.  Genetic population structure and neighbourhood population size estimates of the caddisfly Plectrocnemia conspersa , 2003 .

[28]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[29]  M. Zappa,et al.  Climate change and plant distribution: local models predict high‐elevation persistence , 2009 .

[30]  M. Grosjean,et al.  Climate Variability and Change in High Elevation Regions: Past, Present and Future , 2003 .

[31]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Ellenberg Vegetation Mitteleuropas mit den Alpen : in ökologischer ,dynamischer und historischer Sicht , 2010 .

[33]  P. Haase,et al.  Genetic population structure of an autumn-emerging caddisfly with inherently low dispersal capacity and insights into its phylogeography , 2010, Journal of the North American Benthological Society.

[34]  Stephen James Ormerod,et al.  Dispersal of adult aquatic insects in catchments of differing land use , 2004 .

[35]  P. Haase,et al.  Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival , 2006, Molecular ecology.

[36]  W. Rabitsch,et al.  Disproportional risk for habitat loss of high‐altitude endemic species under climate change , 2011 .

[37]  S. Domisch,et al.  Climate‐change winners and losers: stream macroinvertebrates of a submontane region in Central Europe , 2011 .

[38]  M. Araújo,et al.  Five (or so) challenges for species distribution modelling , 2006 .

[39]  W. Rabitsch,et al.  Distribution patterns, range size and niche breadth of Austrian endemic plants. , 2009 .

[40]  G. Grabherr,et al.  Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA * master site Schrankogel, Tyrol, Austria , 2007 .

[41]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[42]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[43]  Kristine Asch,et al.  The 1:5 Million International Geological Map of Europe and - Adjacent Areas , 2003 .

[44]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[45]  J. Jokela,et al.  Spatial scaling in the phylogeography of an alpine caddisfly, Allogamus uncatus, within the central European Alps , 2010, Journal of the North American Benthological Society.

[46]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[47]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[48]  D. Benkert,et al.  Ellenberg, H., Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht 3., verbesserte Aufl. 989 S., 499 Abb. und 130 Tab. Verlag Eugen Ulmer. Stuttgart, 1982. Preis: Ln. m. Schutzumschlag DM 120.— , 1984 .

[49]  M. Araújo,et al.  BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .

[50]  T. Schmitt,et al.  Divergence and speciation in the Carpathians area: patterns of morphological and genetic diversity of the crane fly Pedicia occulta (Diptera:Pediciidae) , 2010, Journal of the North American Benthological Society.

[51]  W. Thuiller BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change , 2003 .

[52]  W. Thuiller Biodiversity: Climate change and the ecologist , 2007, Nature.

[53]  Brian J. Smith,et al.  Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams , 2004, Hydrobiologia.

[54]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[55]  P. Haase,et al.  Population genetic structure of the caddisfly Rhyacophila pubescens , Pictet 1834, north of the Alps , 2008 .

[56]  S. O’Farrell,et al.  Transient Climate Change in the CSIRO Coupled Model with Dynamic Sea Ice , 1997 .

[57]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[58]  P. Haase,et al.  Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios , 2011, Conservation Genetics.

[59]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .