Comparison of Weibull tail-coefficient estimators
暂无分享,去创建一个
[1] A. Shiryayev. On Sums of Independent Random Variables , 1992 .
[2] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[3] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[4] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[5] E. Haeusler,et al. On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .
[6] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[7] J. Beirlant,et al. Semiparametric lower bounds for tail index estimation , 2006 .
[8] J. Teugels,et al. The mean residual life function at great age: Applications to tail estimation , 1995 .
[9] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[10] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[11] J. Smith,et al. Estimating the upper tail of flood frequency distributions , 1987 .
[12] Frederico Caeiro,et al. A class of asymptotically unbiased semi-parametric estimators of the tail index , 2002 .
[13] Liang Peng,et al. Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .
[14] C. Klüppelberg,et al. Estimation of distribution tails —a semiparametric approach , 1993 .
[15] B. Arnold,et al. A first course in order statistics , 2008 .
[16] Laurent Gardes,et al. Estimating Extreme Quantiles of Weibull Tail Distributions , 2005 .
[17] M. Meerschaert. Regular Variation in R k , 1988 .
[18] S. Girard. A Hill Type Estimator of the Weibull Tail-Coefficient , 2004 .
[19] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[20] M. Broniatowski. On the estimation of the Weibull tail coefficient , 1993 .
[21] B. Arnold,et al. A first course in order statistics , 1994 .