Comparison of Weibull tail-coefficient estimators

We address the problem of estimating the Weibull tail-coefficient which is the regular variation exponent of the inverse failure rate function. We propose a family of estimators of this coefficient and an associate extreme quantile estimator. Their asymptotic normality are established and their asymptotic mean-square errors are compared. The results are illustrated on some finite sample situations

[1]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[2]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[3]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[4]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[5]  E. Haeusler,et al.  On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .

[6]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[7]  J. Beirlant,et al.  Semiparametric lower bounds for tail index estimation , 2006 .

[8]  J. Teugels,et al.  The mean residual life function at great age: Applications to tail estimation , 1995 .

[9]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[10]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[11]  J. Smith,et al.  Estimating the upper tail of flood frequency distributions , 1987 .

[12]  Frederico Caeiro,et al.  A class of asymptotically unbiased semi-parametric estimators of the tail index , 2002 .

[13]  Liang Peng,et al.  Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .

[14]  C. Klüppelberg,et al.  Estimation of distribution tails —a semiparametric approach , 1993 .

[15]  B. Arnold,et al.  A first course in order statistics , 2008 .

[16]  Laurent Gardes,et al.  Estimating Extreme Quantiles of Weibull Tail Distributions , 2005 .

[17]  M. Meerschaert Regular Variation in R k , 1988 .

[18]  S. Girard A Hill Type Estimator of the Weibull Tail-Coefficient , 2004 .

[19]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[20]  M. Broniatowski On the estimation of the Weibull tail coefficient , 1993 .

[21]  B. Arnold,et al.  A first course in order statistics , 1994 .