Some theoretical results on the Grouped Variables Lasso

We consider the linear regression model with Gaussian error. We estimate the unknown parameters by a procedure inspired by the Group Lasso estimator introduced in [22]. We show that this estimator satisfies a sparsity inequality, i.e., a bound in terms of the number of non-zero components of the oracle regression vector. We prove that this bound is better, in some cases, than the one achieved by the Lasso and the Dantzig selector.

[1]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[4]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[5]  T. Tony Cai,et al.  ON BLOCK THRESHOLDING IN WAVELET REGRESSION: ADAPTIVITY, BLOCK SIZE, AND THRESHOLD LEVEL , 2002 .

[6]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[7]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[8]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[9]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[10]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[11]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[12]  Florentina Bunea,et al.  Aggregation and sparsity via 1 penalized least squares , 2006 .

[13]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[14]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[15]  Florentina Bunea,et al.  Sparse Density Estimation with l1 Penalties , 2007, COLT.

[16]  E. Candès,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[17]  Arnak S. Dalalyan,et al.  Aggregation by Exponential Weighting and Sharp Oracle Inequalities , 2007, COLT.

[18]  A. Tsybakov,et al.  Aggregation for Gaussian regression , 2007, 0710.3654.

[19]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[20]  A. Tsybakov,et al.  Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.

[21]  S. Geer HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.

[22]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[23]  V. Koltchinskii Sparsity in penalized empirical risk minimization , 2009 .

[24]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.