Automatically Tagging Constructions of Causation and Their Slot-Fillers

This paper explores extending shallow semantic parsing beyond lexical-unit triggers, using causal relations as a test case. Semantic parsing becomes difficult in the face of the wide variety of linguistic realizations that causation can take on. We therefore base our approach on the concept of constructions from the linguistic paradigm known as Construction Grammar (CxG). In CxG, a construction is a form/function pairing that can rely on arbitrary linguistic and semantic features. Rather than codifying all aspects of each construction’s form, as some attempts to employ CxG in NLP have done, we propose methods that offload that problem to machine learning. We describe two supervised approaches for tagging causal constructions and their arguments. Both approaches combine automatically induced pattern-matching rules with statistical classifiers that learn the subtler parameters of the constructions. Our results show that these approaches are promising: they significantly outperform naïve baselines for both construction recognition and cause and effect head matches.

[1]  Daniel Jurafsky,et al.  Learning Syntactic Patterns for Automatic Hypernym Discovery , 2004, NIPS.

[2]  Randi Reppen,et al.  Building a corpus , 2010 .

[3]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[4]  Franziska Frankfurter,et al.  Constructions: A construction grammar approach to argument structure: Adele E. Goldberg, Chicago, IL: The University of Chicago Press, 1995. xi + 265 pp , 1998 .

[5]  C. Fillmore,et al.  Regularity and Idiomaticity in Grammatical Constructions: The Case of Let Alone , 1988 .

[6]  Sampo Pyysalo,et al.  Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.

[7]  Livio Robaldo,et al.  The Penn Discourse TreeBank 2.0. , 2008, LREC.

[8]  James H. Martin,et al.  Building a Corpus of Temporal-Causal Structure , 2008, LREC.

[9]  Martha Palmer,et al.  Incorporating Coercive Constructions into a Verb Lexicon , 2011, RELMS@ACL.

[10]  Hans C. Boas,et al.  Sign-Based Construction Grammar , 2012 .

[11]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[12]  R. Pargetter,et al.  Metaphysics of causation , 1990 .

[13]  Roger Levy,et al.  Tregex and Tsurgeon: tools for querying and manipulating tree data structures , 2006, LREC.

[14]  Laure Vieu,et al.  A General Framework for the Annotation of Causality Based on FrameNet , 2016, LREC.

[15]  Kuzman Ganchev,et al.  Efficient Inference and Structured Learning for Semantic Role Labeling , 2015, TACL.

[16]  Jaime G. Carbonell,et al.  Resources for the Detection of Conventionalized Metaphors in Four Languages , 2014, LREC.

[17]  Masaru Tomita,et al.  An Efficient Context-Free Parsing Algorithm for Natural Languages , 1985, IJCAI.

[18]  Phillip Wolff,et al.  Expressing causation in english and other languages , 2005 .

[19]  Noah A. Smith,et al.  Frame-Semantic Parsing , 2014, CL.

[20]  Jaime G. Carbonell,et al.  Annotating Causal Language Using Corpus Lexicography of Constructions , 2015, LAW@NAACL-HLT.

[21]  Dan Flickinger,et al.  An Open Source Grammar Development Environment and Broad-coverage English Grammar Using HPSG , 2000, LREC.

[22]  悠太 菊池,et al.  大規模要約資源としてのNew York Times Annotated Corpus , 2015 .

[23]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[24]  Nathan Schneider,et al.  A Corpus of Preposition Supersenses , 2016, LAW@ACL.

[25]  Gosse Bouma,et al.  Extracting Explicit and Implicit Causal Relations from Sparse, Domain-Specific Texts , 2011, NLDB.

[26]  Mirella Lapata,et al.  Context-aware Frame-Semantic Role Labeling , 2015, Transactions of the Association for Computational Linguistics.

[27]  James H. Martin,et al.  Learning Semantic Links from a Corpus of Parallel Temporal and Causal Relations , 2008, ACL.

[28]  Martha Palmer,et al.  Identification of Caused Motion Construction , 2015, *SEMEVAL.

[29]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[30]  Nathanael Chambers,et al.  CaTeRS: Causal and Temporal Relation Scheme for Semantic Annotation of Event Structures , 2016, EVENTS@HLT-NAACL.

[31]  Nathan Schneider,et al.  A Hierarchy with, of, and for Preposition Supersenses , 2015, LAW@NAACL-HLT.

[32]  Peter Clark,et al.  Modeling Biological Processes for Reading Comprehension , 2014, EMNLP.

[33]  Josefina Sierra Santibáñez Computational Issues in Fluid Construction Grammar , 2012, Lecture Notes in Computer Science.

[34]  Zengo Furukawa,et al.  A General Framework for , 1991 .

[35]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[36]  Martha Palmer,et al.  PropBank: Semantics of New Predicate Types , 2014, LREC.

[37]  Ann Bies,et al.  The Penn Treebank: Annotating Predicate Argument Structure , 1994, HLT.

[38]  Cécile Grivaz,et al.  Human Judgements on Causation in French Texts , 2010, LREC.

[39]  Timothy Baldwin,et al.  Multiword Expressions , 2010, Handbook of Natural Language Processing.

[40]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[41]  Paramita Mirza,et al.  An Analysis of Causality between Events and its Relation to Temporal Information , 2014, COLING.

[42]  Nicholas Asher,et al.  Unsupervised extraction of semantic relations using discourse cues , 2014, COLING.

[43]  Charles J. Fillmore,et al.  The FrameNet Constructicon , 2011 .

[44]  Claire Cardie,et al.  Overview of the 2014 NLP Unshared Task in PoliInformatics , 2014, LTCSS@ACL.

[45]  Roxana Gîrju,et al.  Automatic Detection of Causal Relations for Question Answering , 2003, ACL 2003.

[46]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[47]  Martha Palmer,et al.  Verbnet: a broad-coverage, comprehensive verb lexicon , 2005 .

[48]  Charles J. Fillmore Encounters with Language , 2012, Computational Linguistics.

[49]  Katrin Erk,et al.  SemEval-2007 Task 19: Frame Semantic Structure Extraction , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[50]  Kathy McKeown,et al.  Identifying Causal Relations Using Parallel Wikipedia Articles , 2016, ACL.

[51]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[52]  Benjamin K. Bergen,et al.  Embodied Construction Grammar in Simulation-Based Language Understanding , 2003 .