Transformed snapshot interpolation

Functions with jumps and kinks typically arising from parameter dependent or stochastic hyperbolic PDEs are notoriously difficult to approximate. If the jump location in physical space is parameter dependent or random, standard approximation techniques like reduced basis methods, PODs, polynomial chaos, etc. are known to yield poor convergence rates. In order to improve these rates, we propose a new approximation scheme. As reduced basis methods, it relies on snapshots for the reconstruction of parameter dependent functions so that it is efficiently applicable in a PDE context. However, we allow a transformation of the physical coordinates before the use of a snapshot in the reconstruction, which allows to realign the moving discontinuities and yields high convergence rates. The transforms are automatically computed by minimizing a training error. In order to show feasibility of this approach it is tested by 1d and 2d numerical experiments.

[1]  Bernard Haasdonk,et al.  Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws , 2008 .

[2]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[4]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[5]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[6]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[7]  Michel Loève,et al.  Probability Theory I , 1977 .

[8]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[9]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[10]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[11]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[12]  N. Wiener The Homogeneous Chaos , 1938 .

[13]  G. Iaccarino,et al.  Reduced order models for parameterized hyperbolic conservations laws with shock reconstruction , 2012 .

[14]  Wolfgang Dahmen HOW TO BEST SAMPLE A SOLUTION MANIFOLD , 2015 .

[15]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[16]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[17]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[18]  G. Iaccarino,et al.  Numerical methods for uncertainty propagation in high speed flows , 2010 .

[19]  Karsten Urban,et al.  A space-time hp-interpolation-based certified reduced basis method for Burgers' equation , 2014 .

[20]  Dongbin Xiu,et al.  Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..

[21]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[22]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[23]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[24]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[25]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[26]  Siegfried Müller,et al.  Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case , 2016 .

[27]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[28]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[29]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..