Low-Noise and Low-Sensitivity Digital Filters

Publisher Summary The direct-form structure, which is the simplest form of digital filter structures, generates large roundoff noise for transfer functions having sharp frequency response behaviors and often supports limit cycles. Therefore, several other structures that have much better behavior in a quantized environment are employed. This chapter presents the most important structures of these structures. It focuses on binary arithmetic and quantization of binary sequences, along with statistical properties, and noise propagation in digital filters. The chapter describes scaling and dynamic range considerations. It discusses signal-to-noise ratio (SNR) performance in simple structures, a class of low-noise second-order structures based on error-spectrum shaping (ESS), and the concept of SNR to arbitrary structures. It also discusses cascade-form implementations and noise-reduction strategies in such implementations and also discusses state-space structures for low-noise design and closed-form expressions for certain minimum-noise state-space structures.

[1]  W. Mecklenbrauker,et al.  Frequency domain criteria for the absence of zero-input limit cycles in nonlinear discrete-time systems, with applications to digital filters , 1975 .

[2]  S. Mitra,et al.  Modified coupled-form digital-filter structures , 1982, Proceedings of the IEEE.

[3]  B. Liu,et al.  Effect of finite word length on the accuracy of digital filters--a review , 1971 .

[4]  R. Roberts,et al.  An interpretation of error spectrum shaping in digital filters , 1982 .

[5]  Tran-Thong,et al.  Error spectrum shaping in narrow-band recursive filters , 1977 .

[6]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[7]  A. Gray,et al.  A normalized digital filter structure , 1975 .

[8]  Ramesh C. Agarwal,et al.  New recursive digital filter structures having very low sensitivity and roundoff noise , 1975 .

[9]  Z. Unver,et al.  A tighter practical bound on quantization errors in second-order digital filters with complex conjugate poles , 1975 .

[10]  P.P. Vaidyanathan,et al.  Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures , 1984, Proceedings of the IEEE.

[11]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[12]  P. P. Vaidyanathan,et al.  A unified approach to orthogonal digital filters and wave digital filters, based on LBR two-pair extraction , 1985 .

[13]  D. Munson,et al.  Optimal and suboptimal error spectrum shaping for cascade-form digital filters , 1984 .

[14]  R. Crochiere Digital ladder structures and coefficient sensitivity , 1972 .

[15]  Rashid Ansari,et al.  A class of low-noise computationally efficient recursive digital filters with applications to sampling rate alterations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[16]  Bruce W. Bomar New second-order state-space structures for realizing low roundoff noise digital filters , 1985, IEEE Trans. Acoust. Speech Signal Process..

[17]  R. Roberts,et al.  Low roundoff noise and normal realizations of fixed point IIR digital filters , 1981 .

[18]  M.N.S. Swamy,et al.  A new type of wave digital filter , 1975 .

[19]  Alfred Fettweis,et al.  Suppression of parasitic oscillations in wave digital filters , 1975 .

[20]  W. Mecklenbrauker,et al.  Second-order digital filter with only one magnitude-truncation quantiser and having practically no limit cycles , 1973 .

[21]  A. Gersho,et al.  Coefficient inaccuracy in transversal filtering , 1979, The Bell System Technical Journal.

[22]  L. Jackson Roundoff noise bounds derived from coefficient sensitivities for digital filters , 1976 .

[23]  J. Gray Passive cascaded lattice digital filters , 1980 .

[24]  P. P. Vaidyanathan,et al.  Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks , 1986 .

[25]  P. Vaidyanathan,et al.  A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.

[26]  L. Rabiner,et al.  Analysis of quantization errors in the direct form for finite impulse response digital filters , 1973 .

[27]  L. B. Jackson,et al.  An approach to the implementation of digital filters , 1968 .

[28]  P. P. Vaidyanathan On error-spectrum shaping in state-space digital filters , 1985 .

[29]  Patrick Dewilde,et al.  Orthogonal cascade realization of real multiport digital filters , 1980 .

[30]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[31]  Tien-Lin Chang On low-roundoff noise and low-sensitivity digital filter structures , 1981 .

[32]  C. Barnes,et al.  Minimum norm recursive digital filters that are free of overflow limit cycles , 1977 .

[33]  Michael G. Taylor,et al.  Overflow oscillations in digital filters , 1969 .

[34]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[35]  C. Barnes On the design of optimal state-space realizations of second-order digital filters , 1984 .

[36]  S. Hwang Minimum uncorrelated unit noise in state-space digital filtering , 1977 .

[37]  R. Saal,et al.  On the Design of Filters by Synthesis , 1958 .

[38]  Thomas Kailath,et al.  Orthogonal digital filters for VLSI implementation , 1984 .

[39]  C. Barnes A parametric approach to the realization of second-order digital filter sections , 1985 .

[40]  Sanjit K. Mitra,et al.  Passivity properties of low-sensitivity digital filter structures , 1985 .

[41]  S. Hwang On optimization of cascade fixed-point digital filters , 1974 .

[42]  Anthony G. Constantinides Alternative approach to design of wave digital filters , 1974 .

[43]  S. Parker,et al.  Limit-cycle oscillations in digital filters , 1971 .

[44]  L. Jackson Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form , 1970 .

[45]  L. Rabiner,et al.  An algorithm for minimizing roundoff noise in cascade realizations of finite impulse response digital filters , 1973 .

[46]  Tien-Lin Chang,et al.  An error cancellation digital-filter structure and its distributed-arithmetic implementation , 1981 .

[47]  K. Steiglitz,et al.  An easily computed performance bound for finite wordlength direct-form FIR digital filters , 1982 .

[48]  H. J. De Man,et al.  Compact NMOS building blocks and a methodology for dedicated digital filter applications , 1983 .

[49]  Lajos Gazsi,et al.  Explicit formulas for lattice wave digital filters , 1985 .

[50]  Sanjit K. Mitra,et al.  A new approach to the realization of low-sensitivity IIR digital filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[51]  R. Roberts,et al.  Digital filter realizations without overflow oscillations , 1978 .

[52]  Bede Liu,et al.  Heuristic optimization of the cascade realization of fixed-point digital filters , 1975 .

[53]  David C. Munson,et al.  Noise reduction strategies for digital filters: Error spectrum shaping versus the optimal linear state-space formulation , 1982 .

[54]  A. Fettweis Pseudo-passivity, sensitivity, and stability of wave digital filters , 1972 .

[55]  A. Gray,et al.  Digital lattice and ladder filter synthesis , 1973 .

[56]  T. Trick,et al.  An absolute bound on limit cycles due to roundoff errors in digital filters , 1973 .

[57]  Leland B. Jackson,et al.  On the interaction of roundoff noise and dynamic range in digital filters , 1970, Bell Syst. Tech. J..

[58]  Adly T. Fam,et al.  A new structure for narrow transition band, lowpass digital filter design , 1984 .

[59]  A. Oppenheim,et al.  Realization of digital filters using block-floating-point arithmetic , 1970 .

[60]  K. Hirano,et al.  A new class of very low sensitivity and low roundoff noise recursive digital filter structures , 1981 .

[61]  Alfred Fettweis,et al.  On adaptors for wave digital filters , 1975 .

[62]  Adly T. Fam Space-time duality in digital filter structures , 1983 .

[63]  Allen G. Lindgren,et al.  Optimal synthesis of second-order state-space structures for digital filters , 1979 .

[64]  Clifford T. Mullis,et al.  A modular and orthogonal digital filter structure for parallel processing , 1983, ICASSP.

[66]  B. Liu,et al.  Narrow-band recursive filters with error spectrum shaping , 1981 .

[67]  Alfred Fettweis,et al.  Digital filters with true ladder configuration , 1973 .

[68]  A. Mahanta,et al.  FIR filter structures having low sensitivity and roundoff noise , 1982 .

[69]  A. Fettweis,et al.  Wave digital lattice filters , 1974 .

[70]  S. Mitra,et al.  On digital filter structures with low coefficient sensitivities , 1978, Proceedings of the IEEE.

[71]  A. Oppenheim,et al.  Effects of finite register length in digital filtering and the fast Fourier transform , 1972 .

[72]  Debasis Mitra,et al.  Controlled rounding arithmetics, for second-order direct-form digital filters, that eliminate all self-sustained oscillations , 1981 .

[73]  P. P. Vaidyanathan A general theorem for degree-reduction of a digital BR function , 1985 .

[74]  S. Mitra,et al.  Digital all-pass networks , 1974 .

[75]  A. Fettweis Roundoff noise and attenuation sensitivity in digital filters with fixed-point arithmetic , 1973 .