Evidence-Based Model Checking

This paper shows that different "meta-model-checking" analyses can be conducted efficiently on a generic data structure we call a support set. Support sets may be viewed as abstract encodings of the "evidence" a model checker uses to justify the yes/no answers it computes. We indicate how model checkers may be modified to compute supports sets without compromising their time or space complexity. We also show how support sets may be used for a variety of different analyses of model-checking results, including: the generation of diagnostic information for explaining negative model-checking results; and certifying the results of model checking (is the evidence internally consistent?).

[1]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[2]  Angelika Mader,et al.  Verification of modal properties using Boolean equation systems , 1997 .

[3]  Radu Mateescu,et al.  Efficient Diagnostic Generation for Boolean Equation Systems , 2000, TACAS.

[4]  Perdita Stevens,et al.  Practical Model-Checking Using Games , 1998, TACAS.

[5]  Edmund M. Clarke,et al.  Efficient generation of counterexamples and witnesses in symbolic model checking , 1995, DAC '95.

[6]  Girish Bhat,et al.  Efficent Local Model-Checking for Fragments of teh Modal µ-Calculus , 1996, TACAS.

[7]  Colin Stirling,et al.  Lokal Model Checking Games , 1995, CONCUR.

[8]  Mads Dam CTL* and ECTL* as Fragments of the Modal mu-Calculus , 1994, Theor. Comput. Sci..

[9]  C. R. Ramakrishnan,et al.  Fully Local and Efficient Evaluation of Alternating Fixed Points (Extended Abstract) , 1998, TACAS.

[10]  Kedar S. Namjoshi,et al.  Certifying Model Checkers , 2001, CAV.

[11]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[12]  R. Cleaveland Eecient Local Model-checking for Fragments of the Modal -calculus , 1996 .

[13]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[14]  Rance Cleaveland,et al.  The NCSU Concurrency Workbench , 1996, CAV.

[15]  Henrik Reif Andersen,et al.  Model Checking and Boolean Graphs , 1992, Theor. Comput. Sci..

[16]  Girish Bhat,et al.  Efficient model checking via the equational /spl mu/-calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[17]  Doron A. Peled,et al.  From model checking to a temporal proof , 2001, SPIN '01.

[18]  Orna Kupferman,et al.  Vacuity Detection in Temporal Model Checking , 1999, CHARME.

[19]  C. Eisner,et al.  Efficient Detection of Vacuity in ACTL Formulaas , 1997, CAV.

[20]  R. Cleaveland,et al.  Efficient Model Checking Via Büchi Tableau Automata , 2001, CAV.

[21]  Orna Kupferman,et al.  On the Complexity of Parity Word Automata , 2001, FoSSaCS.

[22]  Robert E. Tarjan,et al.  A Hierarchical Clustering Algorithm Using Strong Components , 1982, Inf. Process. Lett..

[23]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[24]  Amir Pnueli,et al.  From Falsification to Verification , 2001, FSTTCS.

[25]  Mads Dam,et al.  CTL* and ECTL* as Fragments of the Modal µ-Calculus , 1992, CAAP.

[26]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.