Optimizing type-I polarization-entangled photons.

Optical quantum information processing needs ultra-bright sources of entangled photons, especially from synchronizable femtosecond lasers and low-cost cw-diode lasers. Decoherence due to timing information and spatial mode-dependent phase has traditionally limited the brightness of such sources. We report on a variety of methods to optimize type-I polarization-entangled sources--the combined use of different compensation techniques to engineer high-fidelity pulsed and cw-diode laser-pumped sources, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB(3)O(6) (BiBO). Using spatial compensation, we show more than a 400-fold improvement in the phase flatness, which otherwise limits efficient collection of entangled photons from BiBO, and report the highest fidelity to date (99%) of any ultrafast polarization-entanglement source. Our numerical code, available on our website, can design optimal compensation crystals and simulate entanglement from a variety of type-I phasematched nonlinear crystals.

[1]  Enrique J. Galvez,et al.  Bell-inequality violations with single photons entangled in momentum and polarization , 2009 .

[2]  Teich,et al.  Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[4]  Generation of entangled photon pairs using small-coherence-time continuous wave pump lasers. , 2008, Applied optics.

[5]  A. Majchrowski,et al.  High-average-power femtosecond pulse generation in the blue using BiB 3 O 6 , 2004 .

[6]  M. Barbieri,et al.  Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. , 2004, Physical review letters.

[7]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[8]  I. Walmsley,et al.  Engineering the Indistinguishability and Entanglement of Two Photons , 1999 .

[9]  Ladislav Bohatý,et al.  Linear optical properties of the monoclinic bismuth borate BiB3O6 , 2000 .

[10]  H. Weinfurter,et al.  Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths , 2008, 0804.3799.

[11]  Dietrich Dehlinger,et al.  Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory , 2002, quant-ph/0205171.

[12]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[13]  Konrad Banaszek,et al.  Photon engineering for quantum information processing , 2003, Quantum Inf. Comput..

[14]  David Branning,et al.  Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals , 2000 .

[15]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[16]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[17]  Onur Kuzucu,et al.  Pulsed Sagnac source of narrow-band polarization-entangled photons , 2007, 0710.5390.

[18]  A. Majchrowski,et al.  High-average-power femtosecond pulse generation in the blue using BiB3O6. , 2004, Optics letters.

[19]  Paul G. Kwiat,et al.  Phase-compensated ultra-bright source of entangled photons: erratum , 2007 .

[20]  Design of bright, fiber-coupled and fully factorable photon pair sources , 2010 .

[21]  Jeffrey H. Shapiro,et al.  High-flux source of polarization-entangled photons from a periodically poled KTiOPO 4 parametric down-converter , 2003, quant-ph/0305092.

[22]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[23]  M. Rubin,et al.  THEORY OF TWO-PHOTON ENTANGLEMENT FOR SPONTANEOUS PARAMETRIC DOWN-CONVERSION DRIVEN BY A NARROW PUMP PULSE , 1997 .

[24]  Sergei P. Kulik,et al.  Experimental entanglement concentration and universal Bell-state synthesizer , 2003 .

[25]  Masood Ghotbi,et al.  Optical second harmonic generation properties of BiB3O6. , 2004, Optics express.

[26]  Jun Chen,et al.  Generation of high purity telecom-band entangled photon-pairs in dispersion-shifted fiber , 2006, QELS 2006.

[27]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[28]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[29]  Quantum state tomography of a fiber-based source of polarization-entangled photon pairs. , 2007, Optics express.

[30]  Alejandra Valencia,et al.  Shaping the waveform of entangled photons. , 2007, Physical review letters.

[31]  Y. Nambu,et al.  Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses , 2002 .

[32]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[33]  P. Becker,et al.  Top-seeded growth of bismuth triborate, BiB3O6 , 1999 .

[34]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.