The design of the lower body of the compliant humanoid robot “cCub”

The “iCub ”is a robotic platform that was developed by the RobotCub [1] consortium to provide the cognition research community with an open “child-like ”humanoid platform for understanding and development of cognitive systems [1]. In this paper we present the mechanical realization of the lower body developed for the “cCub ”humanoid robot, a derivative of the original “iCub”, which has passive compliance in the major joints of the legs. It is hypothesized that this will give to the robot high versatility to cope with unpredictable disturbance ranging from small uneven terrain variations to unexpected collisions or even accidental falls. As part of the AMARSI European project, the passive compliance of this newly developed robot will be exploited for safer interaction, energy efficient and more aggressive damage-safe learning. The passive compliant actuation module used is a compact unit based on the series elastic actuator principle (SEA). In addition to the passive compliance the “cCub ”design includes other significant updates over the original prototype such as full joint state sensing including joint torque sensing and improved range of motion and torque capabilities. In this paper, the new leg mechanisms of the “cCub ”robot are introduced.

[1]  Masayuki Inaba,et al.  The design and control of the flexible spine of a fully tendon-driven humanoid "Kenta" , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  M. Hirose,et al.  Development of Humanoid Robot ASIMO , 2001 .

[3]  Masahiro Fujita,et al.  Motion entertainment by a small humanoid robot based on OPEN-R , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[4]  Shuuji Kajita,et al.  OpenHRP: Open Architecture Humanoid Robotics Platform , 2004, Int. J. Robotics Res..

[5]  Atsuo Takanishi,et al.  Development of a new humanoid robot WABIAN-2 , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Giulio Sandini,et al.  RobotCub: an open framework for research in embodied cognition , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[7]  P. Komi,et al.  Muscle-tendon interaction and elastic energy usage in human walking. , 2005, Journal of applied physiology.

[8]  Nikolaos G. Tsagarakis,et al.  Lower body realization of the baby humanoid - ‘iCub’ , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Nikolaos G. Tsagarakis,et al.  The mechanical design of the new lower body for the child humanoid robot ‘iCub’ , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  T J Roberts,et al.  Muscular Force in Running Turkeys: The Economy of Minimizing Work , 1997, Science.

[11]  Nikolaos G. Tsagarakis,et al.  A compact soft actuator unit for small scale human friendly robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  Jun-Ho Oh,et al.  Mechanical design of the humanoid robot platform, HUBO , 2007, Adv. Robotics.

[13]  Shuuji Kajita,et al.  Development of humanoid robot HRP-3P , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[14]  Nikolaos G. Tsagarakis,et al.  Antagonistic and series elastic actuators: a comparative analysis on the energy consumption , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[16]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[17]  Nikolaos G. Tsagarakis,et al.  iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research , 2007, Adv. Robotics.

[18]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  Friedrich Pfeiffer,et al.  Modular joint design for performance enhanced humanoid robot LOLA , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..