From charcot to lou gehrig: deciphering selective motor neuron death in als

Since its description by Charcot more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in amyotrophic lateral sclerosis has remained a mystery. Modern genetics has now identified mutations in two genes — SOD1 and ALS2 — as primary causes of the disease, and has implicated others as potential contributors. Insights into these abnormalities, together with errors in the handling of synaptic glutamate and the potential excitotoxic response that this alteration provokes, have provided leads for the development of new strategies to identify an as yet elusive remedy for this progressive, fatal disorder.

[1]  M. Swash,et al.  Ubiquitin deposits in anterior horn cells in motor neurone disease , 1988, Neuroscience Letters.

[2]  A. Levey,et al.  Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis , 1995, Annals of neurology.

[3]  L. Kurland,et al.  Familial adult motor neuron disease: amyotrophic lateral sclerosis , 1986, Neurology.

[4]  Lin Jin,et al.  Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis , 1998, Neuron.

[5]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis , 1996, The Lancet.

[6]  V. Meininger,et al.  Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients , 2002, Journal of the Neurological Sciences.

[7]  M. Baudry,et al.  Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model , 2001, Neuroscience Letters.

[8]  C. van Broeckhoven,et al.  Further evidence that neurofilament light chain gene mutations can cause Charcot‐Marie‐Tooth disease type 2E , 2001, Annals of neurology.

[9]  A. Favier,et al.  A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis , 2001 .

[10]  M. Gurney,et al.  Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Schmalbruch,et al.  Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice. , 2001, Human molecular genetics.

[12]  T. Crawford,et al.  Subunit composition of neurofilaments specifies axonal diameter , 1996, The Journal of cell biology.

[13]  J. Julien,et al.  Extra Axonal Neurofilaments Do Not Exacerbate Disease Caused by Mutant Cu,Zn Superoxide Dismutase , 2000, Neurobiology of Disease.

[14]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[15]  O. Andreassen,et al.  Effects of an Inhibitor of Poly(ADP-Ribose) Polymerase, Desmethylselegiline, Trientine, and Lipoic Acid in Transgenic ALS Mice , 2001, Experimental Neurology.

[16]  P. Nunn,et al.  Guam ALS-PDC: possible causes. , 1993, Science.

[17]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[18]  M. Swash,et al.  Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. , 1991, Brain : a journal of neurology.

[19]  M. Harrison,et al.  Calcium metabolism in osteoporosis. Acute and long-term responses to increased calcium intake. , 1961, Lancet.

[20]  P. Ince,et al.  CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. , 1995, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[21]  A Al-Chalabi,et al.  Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. , 1999, Human molecular genetics.

[22]  Wendy Bruening,et al.  Up‐Regulation of Protein Chaperones Preserves Viability of Cells Expressing Toxic Cu/Zn‐Superoxide Dismutase Mutants Associated with Amyotrophic Lateral Sclerosis , 1999, Journal of neurochemistry.

[23]  Q. Zhu,et al.  Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Coyle,et al.  Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis , 1990, Annals of neurology.

[25]  Georg Grön,et al.  The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals , 1999, Journal of the Neurological Sciences.

[26]  A. Ludolph,et al.  LATHYRISM: EVIDENCE FOR ROLE OF THE NEUROEXCITATORY AMINOACID BOAA , 1986, The Lancet.

[27]  S. Hadano,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[28]  D. Cleveland,et al.  Slowing of axonal transport is a very early event in the toxicity of ALS–linked SOD1 mutants to motor neurons , 1999 .

[29]  A. Nersissian,et al.  Loss of in Vitro Metal Ion Binding Specificity in Mutant Copper-Zinc Superoxide Dismutases Associated with Familial Amyotrophic Lateral Sclerosis* , 2000, The Journal of Biological Chemistry.

[30]  F. Uckun,et al.  Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. , 1999, Biochemical and biophysical research communications.

[31]  J. Coyle,et al.  Excitatory amino acids in amyotrophic lateral sclerosis: An update , 1991, Annals of neurology.

[32]  Robert G. Miller,et al.  A clinical trial of verapamil in amyotrophic lateral sclerosis , 1996, Muscle & nerve.

[33]  S. Sakoda,et al.  Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice , 1999, Neuroscience Letters.

[34]  Till Acker,et al.  Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration , 2001, Nature Genetics.

[35]  K. Csiszȧr,et al.  Intrathecal cyclosporin prolongs survival of late-stage ALS mice , 2001, Brain Research.

[36]  N. Ende,et al.  Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). , 2000, Life sciences.

[37]  D. Bredesen,et al.  Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis , 1996, Science.

[38]  J. Haines,et al.  Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. , 2000, JAMA.

[39]  M. Gurney,et al.  Protein Oxidative Damage in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1998, Journal of neurochemistry.

[40]  J. Julien,et al.  Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis , 1993, Cell.

[41]  E. Berkman,et al.  Therapeutic plasmapheresis and plasma exchange. , 1986, Critical reviews in clinical laboratory sciences.

[42]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[43]  S. Minotti,et al.  Mutant Cu/Zn-Superoxide Dismutase Proteins Have Altered Solubility and Interact with Heat Shock/Stress Proteins in Models of Amyotrophic Lateral Sclerosis* , 2001, The Journal of Biological Chemistry.

[44]  D. Price,et al.  Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Leigh,et al.  A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis , 1998, Neurology.

[46]  H. R. Tyler,et al.  The use of isoprinosine in patients with amyotrophic lateral sclerosis , 1971, Neurology.

[47]  M. Gurney,et al.  Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[48]  D. Figlewicz,et al.  Nitrotyrosination contributes minimally to toxicity of mutant SOD1 associated with ALS , 2001, Neuroreport.

[49]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[50]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[51]  J. Haines,et al.  Genetic mapping of a mouse modifier gene that can prevent ALS onset. , 2000, Genomics.

[52]  O. Evgrafov,et al.  A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. , 2000, American journal of human genetics.

[53]  L. WilliamsonT,et al.  神経フィラメントの欠如は,家族性筋萎縮性側索硬化症関連スーパオキジドジスムターゼ1変異に対する運動ニューロンの選択的易損性を低下させ,疾患を遅らせる , 1998 .

[54]  Jeffrey A. Cohen,et al.  A double‐blind, placebo‐controlled trial of TRH in amyotrophic lateral sclerosis , 1986, Neurology.

[55]  J. Julien,et al.  Deregulation of Cdk5 in a Mouse Model of ALS Toxicity Alleviated by Perikaryal Neurofilament Inclusions , 2001, Neuron.

[56]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[57]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[58]  T. Munsat,et al.  Intrathecal administration of natural human nterferon alpha in amyotrophic lateral sclerosis , 1986, Neurology.

[59]  R. Sufit,et al.  Intravenous thyrotropin-releasing hormone in patients with amyotrophic lateral sclerosis. Dose-response and randomized concurrent placebo-controlled pilot studies. , 1987, Neurologic clinics.

[60]  P. Andersen,et al.  Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase , 1995, Nature Genetics.

[61]  P. Ince,et al.  Oxidative damage to protein in sporadic motor neuron disease spinal cord , 1995, Annals of neurology.

[62]  R. Fallat,et al.  Trial of octacosanol in amyotrophic lateral sclerosis , 1986, Neurology.

[63]  K. Johnson An Update. , 1984, Journal of food protection.

[64]  L. Cork,et al.  Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease , 1993, Cell.

[65]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[66]  T. Munsat,et al.  Amantadine and guanidine are ineffective in ALS , 1981, Neurology.

[67]  M. Swash,et al.  Histochemical and immunocytochemical study of ubiquitinated neuronal inclusions in amyotrophic lateral sclerosis , 1993, Neuropathology and applied neurobiology.

[68]  A. Hirano,et al.  Fine Structural Observations of Neurofilamentous Changes in Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[69]  M. Gurney,et al.  Relationship of oxygen radical‐induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS , 1998, Journal of neuroscience research.

[70]  P. Andres,et al.  Intrathecal thyrotropin‐releasing hormone does not alter the progressive course of ALS , 1992, Neurology.

[71]  V. Appel,et al.  A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. , 1988, Archives of neurology.

[72]  M. Mohajeri,et al.  Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. , 1999, Human gene therapy.

[73]  J. Thompson,et al.  Decreased Zinc Affinity of Amyotrophic Lateral Sclerosis‐Associated Superoxide Dismutase Mutants Leads to Enhanced Catalysis of Tyrosine Nitration by Peroxynitrite , 1997, Journal of neurochemistry.

[74]  J S Beckman,et al.  Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. , 1999, Science.

[75]  D L Price,et al.  Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Pericak-Vance,et al.  Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers , 1998, Neurogenetics.

[77]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[78]  L. Rowland,et al.  Transfer factor is ineffective in amyotrophic lateral sclerosis , 1979, Annals of neurology.

[79]  Olivier Curet,et al.  Beneficial Effects of Lysine Acetylsalicylate, a Soluble Salt of Aspirin, on Motor Performance in a Transgenic Model of Amyotrophic Lateral Sclerosis , 1999, Experimental Neurology.

[80]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[81]  D. Borchelt,et al.  Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Carson,et al.  ALS, SOD and peroxynitrite , 1993, Nature.

[83]  O. Andreassen,et al.  N‐acetyl‐L‐cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis , 2000, Neuroreport.

[84]  T. Munsat,et al.  A double‐blind controlled trial of bovine brain gangliosides in amyotrophic lateral sclerosis , 1984, Neurology.

[85]  G. Rosoklija,et al.  Recruitment of the Mitochondrial-Dependent Apoptotic Pathway in Amyotrophic Lateral Sclerosis , 2001, The Journal of Neuroscience.

[86]  P. Sham,et al.  Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. , 1998, Human molecular genetics.

[87]  L. Kurland,et al.  Follow-up study on amyotrophic lateral sclerosis in Rochester, Minn., 1925 through 1984. , 1986, Neuroepidemiology.

[88]  R. Casareno,et al.  The Copper Chaperone for Superoxide Dismutase* , 1997, The Journal of Biological Chemistry.

[89]  M. Gaweł,et al.  Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. , 1997, Neurology.

[90]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[91]  P. Andersen,et al.  Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. , 1996, Brain : a journal of neurology.

[92]  P. Andersen Genetics of sporadic ALS , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[93]  J. Turnbull,et al.  Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice , 2000, Journal of the Neurological Sciences.

[94]  J. Holstege,et al.  Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1 , 2000, Neurobiology of Disease.

[95]  D. Figlewicz,et al.  Aggregation of Mutant Cu/Zn Superoxide Dismutase Proteins in a Culture Model of ALS , 1997, Journal of neuropathology and experimental neurology.

[96]  Robert H. Brown,et al.  Superoxide Dismutase Activity, Oxidative Damage, and Mitochondrial Energy Metabolism in Familial and Sporadic Amyotrophic Lateral Sclerosis , 1993, Journal of neurochemistry.

[97]  L. Bruijn,et al.  Toxicity of ALS-linked SOD1 mutants. , 2000, Science.

[98]  Shen,et al.  Carboxyfullerenes as neuroprotective agents. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Q. Zhu,et al.  Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Jm Charcot,et al.  Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et des faisceaux antero-lateraux de la moelle epiniere , 1869 .

[101]  D. Cleveland,et al.  Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[102]  L. Honig,et al.  Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls , 2000, Neurology.

[103]  X. P. Liu,et al.  A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. , 2000, Biochemical and biophysical research communications.

[104]  M. Akbar,et al.  Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats , 1997, Neuroscience.

[105]  P. Dyck,et al.  Morphometric Comparison of the Vulnerability of Peripheral Motor and Sensory Neurons in Amyotrophic Lateral Sclerosis , 1981, Journal of neuropathology and experimental neurology.

[106]  M. Reinholz,et al.  Therapeutic Benefits of Putrescine-Modified Catalase in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1999, Experimental Neurology.

[107]  K. Roemer,et al.  Motor neuron cell death in a mouse model of FALS is not mediated by the p53 cell survival regulator , 2000, Brain Research.

[108]  O. Andreassen,et al.  Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation , 2001, Journal of neurochemistry.

[109]  J. Kong,et al.  Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis , 2000, Neuroscience Letters.

[110]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[111]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[112]  Junying Yuan,et al.  Inhibition of ICE slows ALS in mice , 1997, Nature.

[113]  M. Hallett,et al.  Ganglioside therapy for amyotrophic lateral sclerosis , 1984, Neurology.

[114]  R. Mason,et al.  Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[115]  M. Yahr,et al.  PILOT TRIAL OF BRANCHED-CHAIN AMINOACIDS IN AMYOTROPHIC LATERAL SCLEROSIS , 1988, The Lancet.

[116]  W. Robberecht,et al.  A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. , 1998, Neurology.

[117]  T. Siddique,et al.  Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[118]  A. Pestronk,et al.  Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation , 1994, Annals of neurology.

[119]  R. Orrell,et al.  A novel SOD mutant and ALS , 1995, Nature.

[120]  B. Crain,et al.  Autosomal dominant juvenile amyotrophic lateral sclerosis. , 1999, Brain : a journal of neurology.

[121]  M. Dubois‐Dauphin,et al.  Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. , 1997, Science.

[122]  Robert H. Brown,et al.  Increased 3‐nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis , 1997, Annals of neurology.

[123]  H. Horvitz,et al.  Superoxide Dismutase Concentration and Activity in Familial Amyotrophic Lateral Sclerosis , 1995, Journal of neurochemistry.

[124]  M. Gurney,et al.  Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis , 1999, Neuroscience.

[125]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[126]  M. Gurney,et al.  The Copper Chelator d‐Penicillamine Delays Onset of Disease and Extends Survival in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1997, The European journal of neuroscience.

[127]  M. Cudkowicz,et al.  Administration of nitric oxide synthase inhibitors does not alter disease course of amyotrophic lateral sclerosis SOD1 mutant transgenic mice , 1999, Annals of neurology.

[128]  M. Willard,et al.  Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells , 1983, Cell.

[129]  Ole A. Andreassen,et al.  Mice with a Partial Deficiency of Manganese Superoxide Dismutase Show Increased Vulnerability to the Mitochondrial Toxins Malonate, 3-Nitropropionic Acid, and MPTP , 2001, Experimental Neurology.

[130]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[131]  M. Hediger,et al.  Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate , 1996, Neuron.

[132]  Masahiko Watanabe,et al.  Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. , 1997, Science.

[133]  D. Cleveland,et al.  A mutant neurofilament subunit causes massive, selective motor neuron death: Implications for the pathogenesis of human motor neuron disease , 1994, Neuron.

[134]  L. Kurland,et al.  Fine Structural Study of Neurofibrillary Changes in a Family with Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[135]  M. Gurney,et al.  Increased 3‐nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation , 1997, Annals of neurology.

[136]  M. Dubois‐Dauphin,et al.  Delaying Caspase Activation by Bcl-2: A Clue to Disease Retardation in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2000, The Journal of Neuroscience.

[137]  N. Laing,et al.  Toxic mutants in Charcot's sclerosis , 1995, Nature.

[138]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[139]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. , 1996, Lancet.

[140]  V. Culotta,et al.  Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Robert H. Brown,et al.  Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis , 1997, Journal of neurochemistry.

[142]  Robert G. Miller,et al.  Controlled trial of nimodipine in amyotrophic lateral sclerosis , 1996, Neuromuscular Disorders.

[143]  J. Slade,et al.  Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS) , 1998, Neuroreport.

[144]  W. Bradley A controlled trial of recombinant methionyl human BDNF in ALS , 1999, Neurology.

[145]  D. Borchelt,et al.  Superoxide Dismutase 1 Subunits with Mutations Linked to Familial Amyotrophic Lateral Sclerosis Do Not Affect Wild-type Subunit Function (*) , 1995, The Journal of Biological Chemistry.

[146]  S. Carpenter Proximal axonal enlargement in motor neuron disease , 1968, Neurology.

[147]  B. Crain,et al.  Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. , 1998, American journal of human genetics.

[148]  M. Gurney,et al.  Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. , 1994, The American journal of pathology.

[149]  A. Favier,et al.  A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[150]  C. Heizmann,et al.  Parvalbumin and calbindin D‐28k in the human motor system and in motor neuron disease , 1993, Neuropathology and applied neurobiology.

[151]  W. Olson,et al.  Therapeutic trial of tilorone in ALS , 1978, Neurology.