Bridging the gap between quantum Monte Carlo and F12-methods

[1]  Wolfgang Hackbusch,et al.  Efficient multi-scale computation of products of orbitals in electronic structure calculations , 2010, Comput. Vis. Sci..

[2]  Wolfgang Hackbusch,et al.  Canonical Tensor Products as a Generalization of Gaussian-type Orbitals , 2010 .

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  T. Helgaker,et al.  The geminal basis in explicitly correlated wave functions , 2009 .

[5]  Reinhold Schneider,et al.  Asymptotic regularity of solutions to Hartree–Fock equations with Coulomb potential , 2008 .

[6]  Wolfgang Hackbusch,et al.  Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.

[7]  Reinhold Schneider,et al.  Best N-term approximation in electronic structure calculations. II. Jastrow factors , 2007 .

[8]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[9]  C. Umrigar,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions. , 2006, Physical review letters.

[10]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[11]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[12]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[13]  Edward F. Valeev,et al.  Analysis of the errors in explicitly correlated electronic structure theory. , 2005, Physical chemistry chemical physics : PCCP.

[14]  C. Umrigar,et al.  Energy and variance optimization of many-body wave functions. , 2004, Physical review letters.

[15]  A. Rappe,et al.  Electronic quantum Monte Carlo calculations of atomic forces, vibrations, and anharmonicities. , 2004, The Journal of chemical physics.

[16]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[17]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[18]  F. Manby,et al.  An explicitly correlated second order Møller-Plesset theory using a frozen Gaussian geminal. , 2004, The Journal of chemical physics.

[19]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[20]  T. Helgaker,et al.  Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12exp(−γr122) , 2002 .

[21]  Reinhold Schneider,et al.  Wavelet approximation of correlated wave functions. I. Basics , 2002 .

[22]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[23]  A. Rappe,et al.  Optimization of quantum Monte Carlo wave functions using analytical energy derivatives , 1999, physics/9911005.

[24]  J. B. Anderson,et al.  Monte Carlo methods in electronic structures for large systems. , 2000, Annual review of physical chemistry.

[25]  S. Mallat A wavelet tour of signal processing , 1998 .

[26]  Foulkes,et al.  Optimized wave functions for quantum Monte Carlo studies of atoms and solids. , 1996, Physical review. B, Condensed matter.

[27]  Y. Meyer Wavelets and Operators , 1993 .

[28]  E. Krotscheck,et al.  Electron correlations in atomic systems , 1992 .

[29]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[30]  R. Bishop,et al.  An overview of coupled cluster theory and its applications in physics , 1991 .

[31]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[32]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[33]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[34]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[35]  Kohn,et al.  Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. , 1985, Physical review. B, Condensed matter.

[36]  Krotscheck Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids. , 1985, Physical review. B, Condensed matter.

[37]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[40]  Physics Reports , 2022 .