Investigation of growth mechanisms of TSS-grown KLu(WO4)2 crystals by atomic force microscopy

Abstract Growth mechanisms on the {1 1 0} and {3 1 0} faces of KLu(WO4)2 crystals for the case of top-seeded solution growth technique have been investigated using ex situ atomic force microscopy (AFM). Both 2D nuclei and spiral hillocks are imaged simultaneously on the {1 1 0} surfaces. A special dislocation sources structure with the Burgers vectors perpendicular to the {1 1 0} crystal face of b = 8 are discussed. The 2D nuclei with elementary-step height are distributed in the direction of the strong PBC [1 0 1], indicative of anisotropic surface diffusion or step edge energy. Straight step trains are observed on the {3 1 0} surfaces of KLuW and they move towards to [0 0 1] directions. It was confirmed that the growth proceeds by both screw dislocation sources and 2D nucleus on the {1 1 0} surfaces and by simple flow of steps on {3 1 0} surfaces.

[1]  U. Griebner,et al.  Continuous-wave laser oscillation of Yb/sup 3+/ in monoclinic KLu(WO/sub 4/)/sub 2/ , 2004, IEEE Journal of Quantum Electronics.

[2]  Walter Koechner,et al.  Efficient single-mode cw lasers based on monoclinic double potassium-(rare earth) tungstenate crystals containing Nd3+ ions with semiconductor-laser pumping , 1992 .

[3]  Reinhard Uecker,et al.  Growth, spectroscopic and laser properties of crystals in the K5Bi1−xNdx(MoO4)4 system , 1977 .

[4]  A. A. Pavlyuk,et al.  Kinetics of the luminescence of the Ho3+ ion KA‴ (WO4)2 crystals , 1986 .

[5]  N. Cabrera,et al.  XLV. On the dislocation theory of evaporation of crystals , 1956 .

[6]  W. G. Perdok,et al.  On the relations between structure and morphology of crystals. I , 1955 .

[7]  J. D. Lee,et al.  Limits on Surface Vicinality and Growth Rate due to Hollow Dislocation Cores on KDP { 101 } , 1997 .

[8]  Kunpeng Wang,et al.  Predicted and real habits of flux grown potassium lutetium tungstate single crystals , 2005 .

[9]  A. Majchrowski,et al.  Top seeded solution growth of KHo(WO4)2 single crystals , 2004 .

[10]  Xavier Mateos,et al.  Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix , 2002 .

[11]  Jerzy Hanuza,et al.  Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm—Lu, Y) , 1987 .

[12]  Wieslaw Strek,et al.  Influence of Yb concentration on Yb:KYW laser properties , 2000 .

[13]  W. Read,et al.  Crystal Growth and Dislocations , 1954 .

[14]  W. Read,et al.  Dislocations in Crystals , 1953 .

[15]  F. Frank Capillary equilibria of dislocated crystals , 1951 .

[16]  Yu. V. Senatskiǐ,et al.  New monograph on the physics of crystal lasers. A.?A.?Kaminskii and B.?M.?Antipenko, Multilevel Functional Crystal Laser Systems (in Russian), Nauka, Moscow (1989) , 1991 .

[17]  P. Bennema,et al.  Thermodynamical stability conditions for the occurrence of hollow cores caused by stress of line and planar defects , 1982 .

[18]  C. Labbé,et al.  Repetitive modulation and passively Q-switching of diode-pumped Nd–KGW laser , 2001 .

[19]  Kunpeng Wang,et al.  Growth and structure of monoclinic KLu(WO4)2 crystals , 2006 .

[20]  Georges Boulon,et al.  Monoclinic Tungstates KDy(WO 4) 2 and KLu(WO 4) 2 - New χ( 3)-Active Crystals for Laser Raman Shifters , 1998 .

[21]  J. Gavaldà,et al.  Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution , 2001 .