Tissue specific specialization of the nanoscale architecture of Arabidopsis.

[1]  S. Ralph,et al.  Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. , 2013, Journal of agricultural and food chemistry.

[2]  V. T. Forsyth,et al.  Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma1[C][W][OA] , 2012, Plant Physiology.

[3]  V. T. Forsyth,et al.  Nanostructure of cellulose microfibrils in spruce wood , 2011, Proceedings of the National Academy of Sciences.

[4]  Yoshiharu Nishiyama,et al.  Structure and properties of the cellulose microfibril , 2009, Journal of Wood Science.

[5]  Shenglan Xu,et al.  Mini-beam collimator enables microcrystallography experiments on standard beamlines. , 2009, Journal of synchrotron radiation.

[6]  Jörg Maser,et al.  X‐ray fluorescence microprobe imaging in biology and medicine , 2006, Journal of cellular biochemistry.

[7]  W. Barthlott,et al.  Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. , 2006, Chemistry and physics of lipids.

[8]  Allen V. Barker,et al.  Handbook of plant nutrition , 2006 .

[9]  Michael E Himmel,et al.  The maize primary cell wall microfibril: a new model derived from direct visualization. , 2006, Journal of agricultural and food chemistry.

[10]  J. Ohlrogge,et al.  Cuticular Lipid Composition, Surface Structure, and Gene Expression in Arabidopsis Stem Epidermis1[W] , 2005, Plant Physiology.

[11]  I. D. Cave Theory of X-ray measurement of microfibril angle in wood , 1997, Wood Science and Technology.

[12]  I. D. Cave Theory of X-ray measurement of microfibril angle in wood , 1997, Wood Science and Technology.

[13]  L. Salmén,et al.  The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis , 1997, Wood Science and Technology.

[14]  R. Preston The case for multinet growth in growing walls of plant cells , 1982, Planta.

[15]  K. Feldmann,et al.  Novel eceriferum mutants in Arabidopsis thaliana , 2004, Planta.

[16]  Mike Jarvis,et al.  Chemistry: Cellulose stacks up , 2003, Nature.

[17]  Stefan Vogt,et al.  MAPS : A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets , 2003 .

[18]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[19]  K. Feldmann,et al.  Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. , 2001, Phytochemistry.

[20]  M. Burghammer,et al.  Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction , 2001, Naturwissenschaften.

[21]  R. Zhong,et al.  Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. , 2000, Plant physiology.

[22]  Peter Fratzl,et al.  Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction , 1999 .

[23]  C. Riekel,et al.  Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering , 1998 .

[24]  Paul Roschger,et al.  Position-Resolved Small-Angle X-ray Scattering of Complex Biological Materials , 1997 .

[25]  C. Somerville,et al.  Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. , 1997, The Plant cell.

[26]  Alessia Cedola,et al.  Microdiffraction Experiments on Single Polymeric Fibers by Synchrotron Radiation , 1997 .

[27]  Peter Fratzl,et al.  The elementary cellulose fibril in Picea abies : comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results , 1995 .

[28]  K. Feldmann,et al.  Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis , 1995, Plant physiology.

[29]  R. Brown,et al.  Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization , 1995 .

[30]  Peter Fratzl,et al.  Size and Arrangement of Elementary Cellulose Fibrils in Wood Cells: A Small-Angle X-Ray Scattering Study of Picea abies , 1994 .

[31]  Robert Evans,et al.  Rapid Measurement of the Transverse Dimensions of Tracheids in Radial Wood Sections from Pinus radiata , 1994 .

[32]  A. Hannoufa,et al.  Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana , 1993 .

[33]  R. H. Walter The Chemistry and technology of pectin , 1991 .

[34]  R. Serimaa,et al.  The structure of amorphous cellulose as revealed by wide-angle X-ray scattering , 1987 .

[35]  Maurice Demarty,et al.  Calcium and the cell wall , 1984 .

[36]  M. Koornneef,et al.  Eceriferum mutants in Arabidopsis thaliana (L.) Heijnh. II. Phenotypic and genetic analysis , 1979 .

[37]  G. Hendry X-ray Fluorescence , 1975 .

[38]  P. Raven,et al.  Biology of plants , 1971 .

[39]  L. F. Molloy,et al.  Complexing of calcium and magnesium by the organic constituents of yorkshire fog (Holcus lanatus): I.—The organic acids, lignin and cell wall polysaccharides of Yorkshire Fog , 1971 .

[40]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[41]  B. Borie X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .

[42]  Frank W. Jane,et al.  The structure of wood , 1956 .

[43]  A. Heyn Small Particle X‐Ray Scattering by Fibers, Size and Shape of Microcrystallites , 1955 .

[44]  U. Sahlberg,et al.  The fibrillar orientation in the S 2-1 ayer of wood fibres as determined by X-ray diffraction analysis , 2022 .