Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries

[1]  李泓 Fundamental scientific aspects of lithium ion batteries(XV)——Summary and outlook , 2015 .

[2]  Liquan Chen,et al.  Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. , 2015, Nanoscale.

[3]  Zhenan Bao,et al.  High‐Areal‐Capacity Silicon Electrodes with Low‐Cost Silicon Particles Based on Spatial Control of Self‐Healing Binder , 2015 .

[4]  Juyoung Kim,et al.  Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[5]  Donghai Wang,et al.  Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐ion Batteries , 2014 .

[6]  Wenquan Lu,et al.  Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries , 2014 .

[7]  D. Mitlin,et al.  Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes , 2014 .

[8]  Dingsheng Wang,et al.  High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization , 2014 .

[9]  Liquan Chen,et al.  3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[10]  Donghai Wang,et al.  Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries , 2014 .

[11]  Steven D. Lacey,et al.  Two dimensional silicon nanowalls for lithium ion batteries , 2014 .

[12]  M. A. Mahdi,et al.  Growth and characterization of silicon nanowires catalyzed by Zn metal via Pulsed Plasma-Enhanced Chemical Vapor Deposition , 2014 .

[13]  Seong‐Hyeon Hong,et al.  Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. , 2014, Nanoscale.

[14]  Wenzheng Li,et al.  Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries , 2014 .

[15]  Zongping Shao,et al.  Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries , 2014 .

[16]  Ping Wu,et al.  Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. , 2014, ACS applied materials & interfaces.

[17]  M. Cassir,et al.  Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling , 2014 .

[18]  Kang Xu,et al.  In situ and quantitative characterization of solid electrolyte interphases. , 2014, Nano letters.

[19]  Jianming Zheng,et al.  Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. , 2014, ChemSusChem.

[20]  Yong‐Mook Kang,et al.  A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage. , 2014, Nanoscale.

[21]  Taek-Soo Kim,et al.  Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. , 2014, Nano letters.

[22]  Perla B. Balbuena,et al.  Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries , 2014, 1401.4165.

[23]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[24]  Liquan Chen,et al.  Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. , 2014, Faraday discussions.

[25]  Joong-Kee Lee,et al.  Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries , 2013 .

[26]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[27]  G. Gautier,et al.  Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector , 2013 .

[28]  D. J. Lee,et al.  Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. , 2013, ACS applied materials & interfaces.

[29]  Can Li,et al.  Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge Process in molten CaCl2 , 2013 .

[30]  Jing Ning,et al.  High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. , 2013, Nano letters.

[31]  Hong Li,et al.  Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries , 2013, Nanotechnology.

[32]  M. Verbrugge,et al.  Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion Batteries , 2013 .

[33]  Zhen Wei,et al.  Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes , 2013 .

[34]  Byung Gon Kim,et al.  Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries , 2013 .

[35]  Sang-Hoon Park,et al.  Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries , 2013 .

[36]  Liangbing Hu,et al.  Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy , 2013 .

[37]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[38]  Young Hee Lee,et al.  Silicon nanowires for Li-based battery anodes: a review , 2013 .

[39]  Qing Zhang,et al.  High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology , 2013 .

[40]  J. Janek,et al.  Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. , 2013, ACS applied materials & interfaces.

[41]  Seung M. Oh,et al.  Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries , 2013 .

[42]  Seung M. Oh,et al.  A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries , 2013 .

[43]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[44]  Jaephil Cho,et al.  Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. , 2013, Nano letters.

[45]  B. Ye,et al.  Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode , 2013 .

[46]  Leigang Xue,et al.  Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode , 2013 .

[47]  Seung‐Wan Song,et al.  Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials , 2013 .

[48]  Bin Liu,et al.  Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries , 2013, Scientific Reports.

[49]  Jang Wook Choi,et al.  Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. , 2013, Nano letters.

[50]  Seong‐Hyeon Hong,et al.  Enhancement of the Cyclability of a Si Anode through Co3O4 Coating by the Sol–Gel Method , 2013 .

[51]  Ke-ning Sun,et al.  High storage performance of core–shell Si@C nanoparticles as lithium ion battery anodematerial , 2013 .

[52]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[53]  Siew Yee Wong,et al.  Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. , 2013, Nanoscale.

[54]  Shuru Chen,et al.  Micro‐sized Si‐C Composite with Interconnected Nanoscale Building Blocks as High‐Performance Anodes for Practical Application in Lithium‐Ion Batteries , 2013 .

[55]  L. Archer,et al.  Interdispersed silicon–carbon nanocomposites and their application as anode materials for lithium-ion batteries , 2013 .

[56]  李泓,et al.  锂电池基础科学问题(I)----化学储能电池理论能量密度的估算 , 2013 .

[57]  Shuru Chen,et al.  Exceptional electrochemical performance of rechargeable Li–S batteries with a polysulfide-containing electrolyte , 2013 .

[58]  Joonwon Bae,et al.  A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery , 2013, Macromolecular Research.

[59]  M. Cassir,et al.  Interphase chemistry of Si electrodes used as anodes in Li-ion batteries , 2013 .

[60]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[61]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[62]  T. Yokoshima,et al.  Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries , 2013 .

[63]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[64]  P. Chu,et al.  Ni-coated Si microchannel plate electrodes in three-dimensional lithium-ion battery anodes , 2013 .

[65]  Jiangfeng Qian,et al.  SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries , 2013 .

[66]  K. Amine,et al.  New anode material based on SiO-SnxCoyCz for lithium batteries , 2012 .

[67]  Shota Hashimoto,et al.  Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[68]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[69]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[70]  Xiqian Yu,et al.  Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction , 2012 .

[71]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[72]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[73]  G. Graff,et al.  Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. , 2012, Nano letters.

[74]  Adam Heller,et al.  High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. , 2012, Chemical communications.

[75]  G. Madras,et al.  Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique , 2012, Journal of Chemical Sciences.

[76]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[77]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[78]  Y. Chabal,et al.  Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries , 2012 .

[79]  Li-Jun Wan,et al.  Silicon-based nanomaterials for lithium-ion batteries , 2012 .

[80]  A. Pandolfo,et al.  Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode , 2012 .

[81]  Goojin Jeong,et al.  Multifunctional TiO2 coating for a SiO anode in Li-ion batteries , 2012 .

[82]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[83]  Ruijuan Xiao,et al.  Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries , 2012 .

[84]  Hong Li,et al.  Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. , 2012, Nano letters.

[85]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[86]  Gregory A. Roberts,et al.  Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[87]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[88]  Ya-pu Zhao,et al.  Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery , 2012 .

[89]  Xinyue Zhao,et al.  Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode , 2012 .

[90]  D. Aurbach,et al.  Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component , 2012 .

[91]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[92]  Soo-Jin Park,et al.  Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching , 2011 .

[93]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[94]  S. Okada,et al.  Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery , 2011 .

[95]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[96]  Wanli Xu,et al.  Surface-modified silicon nanowire anodes for lithium-ion batteries , 2011 .

[97]  Adri C. T. van Duin,et al.  Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study , 2011 .

[98]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[99]  Byung-Seon Kong,et al.  Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries , 2011 .

[100]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[101]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[102]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[103]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[104]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[105]  Shinichi Komaba,et al.  Study on polymer binders for high-capacity SiO negative electrode of Li-Ion batteries , 2011 .

[106]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[107]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[108]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[109]  P. Notten,et al.  Honeycomb‐Structured Silicon: Remarkable Morphological Changes Induced by Electrochemical (De)Lithiation , 2011, Advanced materials.

[110]  Yang-Tse Cheng,et al.  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes , 2011 .

[111]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[112]  Chunsheng Wang,et al.  A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus‐Structured Current Collector , 2011 .

[113]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[114]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[115]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[116]  Chunsheng Wang,et al.  A Porous Silicon-Carbon Anode with High Overall Capacity on Carbon Fiber Current Collector , 2010 .

[117]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[118]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[119]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[120]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[121]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[122]  J.F.M. Oudenhoven,et al.  On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries , 2009 .

[123]  K. Chung,et al.  Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries , 2009 .

[124]  Ki-tae Kim,et al.  Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell , 2009 .

[125]  Yang‐Kook Sun,et al.  Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling , 2009 .

[126]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[127]  Martin Winter,et al.  Nano-porous SiO/carbon composite anode for lithium-ion batteries , 2009 .

[128]  Hung-Chun Wu,et al.  Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells , 2009 .

[129]  Libao Chen,et al.  An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries , 2009 .

[130]  Arenst Andreas Arie,et al.  Effect of fullerene coating on silicon thin film anodes for lithium rechargeable batteries , 2009 .

[131]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[132]  J. Dahn,et al.  Al–Si Thin-Film Negative Electrodes for Li-Ion Batteries , 2008 .

[133]  T. Takamura,et al.  The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity , 2008 .

[134]  Yang‐Kook Sun,et al.  Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology , 2008 .

[135]  Seong-In Moon,et al.  A new SiO/C anode composition for lithium-ion battery , 2008 .

[136]  J. Dahn,et al.  Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder , 2008 .

[137]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[138]  M. Armand,et al.  Building better batteries , 2008, Nature.

[139]  Sung-Man Lee,et al.  Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries , 2008 .

[140]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[141]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[142]  Jing-ying Xie,et al.  Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries , 2007 .

[143]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[144]  D. Aurbach,et al.  In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium , 2007 .

[145]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[146]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[147]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[148]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[149]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[150]  J. Dahn,et al.  Simple Model for the Capacity of Amorphous Silicon-Aluminum-Transition Metal Negative Electrode Materials , 2006 .

[151]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[152]  J. Dahn,et al.  A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i , 2006 .

[153]  Jie Gao,et al.  Core-shell Si/C nanocomposite as anode material for lithium ion batteries , 2006 .

[154]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[155]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[156]  Y. W. Chen,et al.  Self-assembled silicon nanotubes under supercritically hydrothermal conditions. , 2005, Physical review letters.

[157]  M. Lain,et al.  A lithium ion cell containing a non-lithiated cathode , 2005 .

[158]  S. Dou,et al.  Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling , 2005 .

[159]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[160]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[161]  T. Fukunaga,et al.  Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering , 2004 .

[162]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[163]  J. Dahn,et al.  Combinatorial Investigations of the Si-Al-Mn System for Li-Ion Battery Applications , 2004 .

[164]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[165]  Jaeho Lee,et al.  Deposition of high crystallinity poly-Si films on glass substrate and fabrication of high mobility bottom-gate TFT , 2004 .

[166]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[167]  H. Lee,et al.  Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries , 2004 .

[168]  F. E. Little,et al.  Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures , 2004 .

[169]  Yoji Shirato,et al.  Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes , 2004 .

[170]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[171]  J. Dahn,et al.  The amorphous range in sputtered Si–Al–Sn films , 2003 .

[172]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[173]  Mansoo Choi,et al.  Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method , 2003 .

[174]  M. Yoshio,et al.  Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations , 2003 .

[175]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[176]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[177]  Jingying Xie,et al.  SiOx-based anodes for secondary lithium batteries , 2002 .

[178]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[179]  Liquan Chen,et al.  Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS) , 2002 .

[180]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[181]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[182]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[183]  Liquan Chen,et al.  Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries , 2000 .

[184]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[185]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[186]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[187]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[188]  Liquan Chen,et al.  Controlled Li doping of Si nanowires by electrochemical insertion method , 1999 .

[189]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[190]  D. Aurbach,et al.  New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries , 1999 .

[191]  M. Radmacher,et al.  Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope , 1998 .

[192]  B. Way,et al.  Nanodispersed silicon in pregraphitic carbons , 1995 .

[193]  C. Koch,et al.  The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling , 1995 .

[194]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[195]  J. Perepezko,et al.  The effect of pressure on phase selection during nucleation in undercooled bismuth , 1986 .

[196]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[197]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[198]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[199]  Ram A. Sharma,et al.  Investigation of lithium utilization from a lithium--silicon electrode. [Liâ Si, Liââ Siâ, Liââ Siâ] , 1977 .

[200]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[201]  S. Lai Solid Lithium‐Silicon Electrode , 1976 .

[202]  H. Schäfer,et al.  Zur Kenntnis der Phase Li22Si5 , 1966 .

[203]  H. Axel,et al.  The Crystal Structure of Lithium Silicide Li2Si , 1965 .