Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing.

optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.

[1]  Daniel Jaque,et al.  Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing. , 2008, Optics express.

[2]  Marian Zamfirescu,et al.  Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique. , 2014, Optics express.

[3]  Ian Bennion,et al.  Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. , 2012, Optics express.

[4]  Moshe Horowitz,et al.  Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings , 2008 .

[5]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[6]  A. Okhrimchuk,et al.  Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing. , 2005, Optics letters.

[7]  El-Hang Lee,et al.  A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials. , 2009, Optics express.

[8]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[9]  Feng Chen,et al.  Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining , 2014 .

[10]  Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments. , 2010, Optics letters.

[11]  Feng Chen,et al.  Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides , 2009 .

[12]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[13]  C Denz,et al.  Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing. , 2012, Optics express.

[14]  Graeme Brown,et al.  Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique. , 2012, Optics letters.

[15]  Koji Sugioka,et al.  Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. , 2008, Optics letters.

[16]  Andreas Tünnermann,et al.  Waveguides in lithium niobate fabricated by focused ultrashort laser pulses , 2007 .

[17]  Andreas Tünnermann,et al.  Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate , 2006 .

[18]  Andreas Tünnermann,et al.  Structural properties of femtosecond laser-induced modifications in LiNbO3 , 2006 .

[19]  Feng Chen,et al.  Femtosecond laser micromachining of lithium niobate depressed cladding waveguides , 2013 .

[20]  Andreas Tünnermann,et al.  Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform , 2011 .

[21]  T. Erdogan Fiber grating spectra , 1997 .

[22]  Yoshinori Hibino,et al.  Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. , 2005, Optics letters.

[23]  Marian Zamfirescu,et al.  Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique , 2014 .

[24]  Andreas Tünnermann,et al.  Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .

[25]  Simon Gross,et al.  Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN. , 2012, Optics letters.

[26]  Feng Chen,et al.  Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance. , 2012, Optics express.

[27]  A. Kar,et al.  Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription , 2006, IEEE Photonics Technology Letters.

[28]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .