A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field

Detection of the Epoch of Reionization HI signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA=0 field of the Murchison Widefield Array Epoch of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen toward lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec. compared to a 2.3 arcmin. beam FWHM. The resulting catalogue covers approximately 1400 sq. deg. and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction.

[1]  M. Morales,et al.  Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.

[2]  S. J. Tingay,et al.  Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.

[3]  A. R. Whitney,et al.  THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.

[4]  A. Shulevski,et al.  The ASKAP/EMU Source Finding Data Challenge , 2015, Publications of the Astronomical Society of Australia.

[5]  M. C. Toribio,et al.  The LOFAR Multifrequency Snapshot Sky Survey (MSSS) - I. Survey description and first results , 2015, 1509.01257.

[6]  Max Tegmark,et al.  CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA , 2015, 1506.06150.

[7]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[8]  Max Tegmark,et al.  FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA , 2015, 1502.07596.

[9]  R. Ekers,et al.  Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array , 2014, 1412.3856.

[10]  Roger Cappallo,et al.  The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees , 2014, Publications of the Astronomical Society of Australia.

[11]  S. Velzen,et al.  The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.

[12]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[13]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[14]  A. A. Deshpande,et al.  FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY , 2012, 1209.1653.

[15]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[16]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[17]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[18]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[19]  Trevor Hastie,et al.  Multi-class AdaBoost ∗ , 2009 .

[20]  Miguel F. Morales,et al.  Software holography: interferometric data analysis for the challenges of next generation observatories , 2008, 0810.5107.

[21]  J. Usón,et al.  Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.

[22]  Alexander S. Szalay,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROBABILISTIC CROSS-IDENTIFICATION OF ASTRONOMICAL SOURCES , 2008 .

[23]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[24]  J. Curran,et al.  SUMSS: a wide-field radio imaging survey of the southern sky – II. The source catalogue , 2003, astro-ph/0303188.

[25]  J. Bond,et al.  A Fast Gridded Method for the Estimation of the Power Spectrum of the Cosmic Microwave Background from Interferometer Data with Application to the Cosmic Background Imager , 2002, astro-ph/0205385.

[26]  C. Dermer Variability in blazars , 1999, astro-ph/9901324.

[27]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[28]  Michael I. Large,et al.  A machine-readable release of the Molonglo Reference Catalogue of Radio Sources , 1991 .

[29]  R. Roger,et al.  The low-frequency spectra of nonthermal radio sources , 1973 .

[30]  A. Eddington,et al.  On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .

[31]  C. Contaldi,et al.  A Fast Gridded Method for the Estimation of the Power Spectrum of the CMB from Interferometer Data with Application to the Cosmic Background Imager , 2022 .