Cardiac neuronal hierarchy in health and disease.

The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.

[1]  D. Hopkins,et al.  Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. , 1998, Journal of the autonomic nervous system.

[2]  H. Coleridge,et al.  Cardiac receptors in the dog, with particular reference to two types of afferent ending in the ventricular wall , 1964, The Journal of physiology.

[3]  W. C. Randall,et al.  Regional cardiac distribution of the sympathetic nerves. , 1972, Federation proceedings.

[4]  G. Klassen,et al.  Coronary venous pressure and flow: effects of vagal stimulation, aortic occlusion, and vasodilators. , 1984, Canadian journal of physiology and pharmacology.

[5]  A. Brown Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia , 1967, The Journal of physiology.

[6]  Andreas Lechner,et al.  Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. , 2003, American journal of physiology. Endocrinology and metabolism.

[7]  John C. Longhurst Principles of Cardiovascular Neural Regulation in Health and Disease , 2002 .

[8]  R. Cardinal,et al.  Intrinsic cardiac nervous system in tachycardia induced heart failure. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[9]  M. Bristow The adrenergic nervous system in heart failure. , 1984, The New England journal of medicine.

[10]  R. Foreman Mechanisms of cardiac pain. , 1999, Annual review of physiology.

[11]  W. C. Randall,et al.  Cardiac dysrhythmias induced by autonomic nerve stimulation. , 1973, The American journal of cardiology.

[12]  D. Randall,et al.  Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[13]  E. Braunwald,et al.  Parasympathetic control of the heart. , 1973, Pharmacological reviews.

[14]  R Lazzara,et al.  Focal Atrial Fibrillation: Experimental Evidence for a Pathophysiologic Role of the Autonomic Nervous System , 2001, Journal of cardiovascular electrophysiology.

[15]  T. Gray,et al.  Monoamine- and histamine-synthesizing enzymes and neurotransmitters within neurons of adult human cardiac ganglia. , 1999, Circulation.

[16]  A. Sakurai,et al.  Tension sensitivity of the heart pacemaker neurons in the isopod crustacean Ligia pallasii , 2003, Journal of Experimental Biology.

[17]  D. Hopkins,et al.  Porcine intrinsic cardiac ganglia. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[18]  C. Sylvén,et al.  Ventricular sensory neurons in canine dorsal root ganglia: effects of adenosine and substance P. , 1995, The American journal of physiology.

[19]  D. Hopkins,et al.  Distribution of neuropeptide-like immunoreactivity in intact and chronically decentralized middle cervical and stellate ganglia of dogs. , 1987, Journal of the autonomic nervous system.

[20]  Daniel J. Uhlrich,et al.  Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat , 1985, Nature.

[21]  J. Armour,et al.  Role of peripheral autonomic neurones in maintaining adequate cardiac function. , 1995, Cardiovascular research.

[22]  S. Forsgren,et al.  Catecholamine-synthesizing enzymes and neuropeptides in rat heart epicardial ganglia; an immunohistochemical study , 1990, The Histochemical Journal.

[23]  Z. Bosnjak,et al.  Cardiac Sympathetic Afferent Cell Bodies Are Located in the Peripheral Nervous System of the Cat , 1989, Circulation research.

[24]  K Koizumi,et al.  Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. , 1979, Journal of the autonomic nervous system.

[25]  Zoran B Popović,et al.  Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation. , 2002, American journal of physiology. Heart and circulatory physiology.

[26]  D. Hopkins,et al.  Gross and microscopic anatomy of the human intrinsic cardiac nervous system , 1997, The Anatomical record.

[27]  N. Sperelakis Heart physiology and pathophysiology , 2001 .

[28]  E. Spuentrup,et al.  Visualization of cardiac myxoma mobility with real-time spiral magnetic resonance imaging. , 2001, Circulation.

[29]  D. V. Priola,et al.  Source of intrinsic innervation of canine ventricles: a functional study. , 1987, The American journal of physiology.

[30]  R Rubio,et al.  Release of adenosine in reactive hyperemia of the dog heart. , 1969, The American journal of physiology.

[31]  J. Hartikainen,et al.  Sympathetic reinnervation after acute myocardial infarction. , 1996, The American journal of cardiology.

[32]  G. Rousseau,et al.  Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[33]  M. Turiel,et al.  Power Spectral Analysis of Heart Rate and Arterial Pressure Variabilities as a Marker of Sympatho‐Vagal Interaction in Man and Conscious Dog , 1986, Circulation research.

[34]  P. Schwartz Neural mechanisms in cardiac arrhythmias , 1978 .

[35]  V. Somers,et al.  Arterial baroreflex function and cardiovascular variability: interactions and implications. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[36]  K. J. Hirsch,et al.  Transmyocardial Laser Revascularization Remodels the Intrinsic Cardiac Nervous System in a Chronic Setting , 2001, Circulation.

[37]  I. K. Jordan,et al.  The physiological and anatomical demonstration of functionally selective parasympathetic ganglia located in discrete fat pads on the feline myocardium. , 1995, Journal of the autonomic nervous system.

[38]  W. C. Randall,et al.  Localization of vagal preganglionic somata controlling sinoatrial and atrioventricular nodes. , 1988, The American journal of physiology.

[39]  J. Armour,et al.  Chemotransduction properties of nodose ganglion cardiac afferent neurons in guinea pigs. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[40]  R. Gillis,et al.  Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. , 1998, Journal of the autonomic nervous system.

[41]  A. J. Minisi,et al.  Regional left ventricular deafferentation increases baroreflex sensitivity following myocardial infarction. , 2003, Cardiovascular research.

[42]  J. P. Gilmore,et al.  Reflex Control of the Circulation , 1991 .

[43]  Regional vagosympathetic control of the heart. , 1974, The American journal of physiology.

[44]  D. Hopkins,et al.  Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. , 1990, The American journal of physiology.

[45]  A. Malliani,et al.  Activation of cardiac vagal receptors during myocardial ischemia , 1971, Experientia.

[46]  L. Biblo,et al.  Identification and Characterization of Atrioventricular Parasympathetic Innervation in Humans , 2002, Journal of cardiovascular electrophysiology.

[47]  Arthur C. Guyton,et al.  Handbook of Physiology—The Cardiovascular System , 1985 .

[48]  D. Hopkins,et al.  Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. , 1993, Cardiovascular research.

[49]  D. Hopkins,et al.  Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. , 1989, Journal of the autonomic nervous system.

[50]  D. Murphy,et al.  Capacity of intrinsic cardiac neurons to modify the acutely autotransplanted mammalian heart. , 1994, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[51]  R. Papka Studies of cardiac ganglia in pre- and postnatal rabbits , 1976, Cell and Tissue Research.

[52]  R. Negoescu,et al.  Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. , 1996, Cardiovascular research.

[53]  J. Schwaber,et al.  Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy , 1997, The Journal of comparative neurology.

[54]  E. Nalivaiko,et al.  Electrocardiographic changes associated with the nasopharyngeal reflex in conscious rabbits: vago-sympathetic co-activation , 2003, Autonomic Neuroscience.

[55]  D L Kunze,et al.  Nucleus tractus solitarius--gateway to neural circulatory control. , 1994, Annual review of physiology.

[56]  R. Nadeau,et al.  Oxygen-free radicals and myocardial nerve fibers endings. , 1994, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[57]  D. Wilber,et al.  Vagal Stimulation and Atrial Fibrillation: Experimental Models and Clinical Uncertainties , 2002, Journal of cardiovascular electrophysiology.

[58]  R. Weiss,et al.  Heart failure and the brain: new perspectives. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[59]  B. Linderoth,et al.  Physiology of Spinal Cord Stimulation: Review and Update , 1999, Neuromodulation : journal of the International Neuromodulation Society.

[60]  J. Armour,et al.  Modification of supraventricular tachyarrhythmias by stimulating atrial neurons. , 1990, The Annals of thoracic surgery.

[61]  C. Sylvén,et al.  Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. , 1994, Cardiovascular research.

[62]  J. Armour Comparative effects of endothelin and neurotensin on intrinsic cardiac neurons in situ , 1996, Peptides.

[63]  M. Rosen,et al.  The pharmacology of cardiac memory. , 2002, Pharmacology & therapeutics.

[64]  K. Spyer,et al.  The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. , 1976, The Journal of physiology.

[65]  J. Stark,et al.  Modified Senning operation for cavopulmonary connection with autologous tissue. , 1995, The Journal of thoracic and cardiovascular surgery.

[66]  G. Kember,et al.  Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  G. Jennings,et al.  Adrenergic nervous system in heart failure. , 1997, The American journal of cardiology.

[68]  R. Arora,et al.  Adenosine A1 receptor activation reduces myocardial reperfusion effects on intrinsic cardiac nervous system. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[69]  J. Longhurst,et al.  Ischemia- and reperfusion-sensitive cardiac sympathetic afferents: influence of H2O2 and hydroxyl radicals. , 1995, The American journal of physiology.

[70]  J. Armour,et al.  ANG II modifies cardiomyocyte function via extracardiac and intracardiac neurons: in situ and in vitro studies. , 1997, The American journal of physiology.

[71]  J. Arndt,et al.  The afferent discharge pattern of atrial mechanoreceptors in the cat during sinusoidal stretch of atrial strips in situ , 1974, The Journal of physiology.

[72]  J. Armour Instant to Instant Reflex Cardiac Regulation , 1976 .

[73]  P. Thorén,et al.  Role of cardiac vagal C-fibers in cardiovascular control. , 1979, Reviews of physiology, biochemistry and pharmacology.

[74]  E. Ustinova,et al.  Enhanced responsiveness of cardiac vagal chemosensitive endings to bradykinin in heart failure. , 1997, The American journal of physiology.

[75]  Pierre L. Page,et al.  Regional distribution of atrial electrical changes induced by stimulation of extracardiac and intracardiac neural elements. , 1995, The Journal of thoracic and cardiovascular surgery.

[76]  J. Armour Myocardial ischaemia and the cardiac nervous system. , 1999, Cardiovascular research.

[77]  J. Armour Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. , 1986, Canadian journal of physiology and pharmacology.

[78]  A. Paintal,et al.  A study of right and left atrial receptors , 1953, The Journal of physiology.

[79]  W. C. Randall Neural Regulation of the Heart , 1977 .

[80]  D. Hopkins,et al.  Pathology of intrinsic cardiac neurons from ischemic human hearts , 2000, The Anatomical record.

[81]  B. Mayer,et al.  Multiple populations of neuropeptide-containing intrinsic neurons in the guinea-pig heart , 1994, Neuroscience.

[82]  R. Cardinal,et al.  Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure. , 1996, Canadian journal of physiology and pharmacology.

[83]  J. Armour,et al.  Distribution of intrinsic cardiac neurons in whole-mount guinea pig atria identified by multiple neurochemical coding , 1999, Cell and Tissue Research.

[84]  A. Leaf,et al.  Medicine or physiology: my personal mix. , 2001, Annual review of physiology.

[85]  G. Kember,et al.  Aperiodic stochastic resonance in a hysteretic population of cardiac neurons. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  J. Armour,et al.  Role of P(1) purinergic receptors in myocardial ischemia sensory transduction. , 2002, Cardiovascular research.

[87]  V. Skok Physiology of autonomic ganglia , 1973 .

[88]  H. R. Holmes,et al.  Correlation of ventricular mechanosensory neurite activity with myocardial sensory field deformation. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[89]  J. Armour,et al.  Chemical modulation of in situ intrinsic cardiac neurones influences myocardial blood flow in the anaesthetised dog. , 1994, Cardiovascular research.

[90]  S Nattel,et al.  Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. , 1997, The American journal of physiology.

[91]  S. Furukawa,et al.  Changes in hemodynamics and bradykinin concentration in coronary sinus blood in experimental coronary artery occlusion. , 1977, Japanese heart journal.

[92]  G. Kember,et al.  Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. , 1998, American journal of physiology. Regulatory, integrative and comparative physiology.

[93]  D. Hopkins,et al.  Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. , 1991, The American journal of physiology.

[94]  J. Ardell Neurohumoral Control of Cardiac Function , 2001 .

[95]  D. Zipes,et al.  Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. , 1988, Circulation.

[96]  G E Reed,et al.  Release of nucleosides from canine and human hearts as an index of prior ischemia. , 1979, The American journal of cardiology.

[97]  S. S. Hull,et al.  Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. , 2000, Cardiovascular research.

[98]  W. H. Vance,et al.  Spinal origins of cardiac afferents from the region of the left anterior descending artery , 1983, Brain Research.

[99]  Alberto Malliani,et al.  Cardiovascular sympathetic afferent fibers , 1982 .

[100]  G. Hageman,et al.  Differential cardiac sympathetic activity during acute myocardial ischemia. , 1990, American Journal of Physiology.

[101]  J. Armour,et al.  Ventricular arrhythmias induced by chemically modified intrinsic cardiac neurones. , 1994, Cardiovascular research.

[102]  E. Ustinova,et al.  Activation of cardiac vagal afferents in ischemia and reperfusion. Prostaglandins versus oxygen-derived free radicals. , 1994, Circulation research.

[103]  E. Ustinova,et al.  Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. , 1994, Circulation research.

[104]  D. Hopkins,et al.  Gross and microscopic anatomy of the canine intrinsic cardiac nervous system , 1994, The Anatomical record.

[105]  R. Arora,et al.  Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts , 2002, Autonomic Neuroscience.

[106]  W. C. Randall Nervous Control of the Heart , 1966 .

[107]  M. N. Levy,et al.  Neural Control of the Heart , 1984 .

[108]  P. Larsen,et al.  Long-term correlations in the spike trains of medullary sympathetic neurons. , 2001, Journal of neurophysiology.

[109]  J. Ardell,et al.  Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. , 2004, Journal of applied physiology.

[110]  J. Lipski,et al.  The network vs. pacemaker theory of the activity of RVL presympathetic neurons-a comparison with another putative pacemaker system , 2002, Autonomic Neuroscience.

[111]  D. A. Powell,et al.  Peripheral autonomic mechanisms and Pavlovian conditioning in the rabbit (Oryctolagus cuniculus). , 1980, Journal of comparative and physiological psychology.

[112]  G Kember,et al.  Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus , 2000, The Journal of physiology.

[113]  M. Weisfeldt,et al.  Direct measurement of free radical generation following reperfusion of ischemic myocardium. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[114]  L. Dell’Italia,et al.  &bgr;1-Adrenergic Receptor Blockade Attenuates Angiotensin II–Mediated Catecholamine Release Into the Cardiac Interstitium in Mitral Regurgitation , 2003, Circulation.

[115]  D. Pauza,et al.  Electron microscopic study of intrinsic cardiac ganglia in the adult human. , 2003, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[116]  P. Spooner,et al.  On the Neural Connection , 2001, Journal of cardiovascular electrophysiology.

[117]  F. Crea,et al.  Substance P potentiates the algogenic effects of intraarterial infusion of adenosine. , 1994, Journal of the American College of Cardiology.

[118]  P. Sleight,et al.  The importance of the autonomic nervous system in health and disease. , 1997, Australian and New Zealand journal of medicine.

[119]  E. Feigl,et al.  Control of Coronary Blood Flow during Exercise , 2002, Experimental biology and medicine.

[120]  R. L. Holmes,et al.  The location of atrial receptors in the dog: a physiological and histological study , 1957, The Journal of physiology.

[121]  M. Carlson,et al.  Partial Vagal Denervation Increases Vulnerability to Vagally Induced Atrial Fibrillation , 2002, Journal of cardiovascular electrophysiology.

[122]  K. M. Chapman,et al.  Strain sensitivity and directionality in cat atrial mechanoreceptors in vitro. , 1976, The Journal of physiology.

[123]  L. Weaver,et al.  Multisegmental spinal sympathetic reflexes originating from the heart. , 1983, The American journal of physiology.

[124]  K. M. Spyer,et al.  Central regulation of autonomic functions , 1990 .

[125]  A. Pelleg,et al.  Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents. , 1996, The American journal of physiology.

[126]  G. Burnstock,et al.  Intrinsic neurones and associated cells of the guinea-pig heart in culture , 1986, Brain Research.

[127]  L. Dell’Italia,et al.  Angiotensin II modulates catecholamine release into interstitial fluid of canine myocardium in vivo. , 2001, American journal of physiology. Heart and circulatory physiology.

[128]  M. Fishbein,et al.  Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. , 2001, Cardiovascular research.

[129]  J. Cohn,et al.  Abnormalities of peripheral sympathetic nervous system control in congestive heart failure. , 1990, Circulation.

[130]  W. C. Randall,et al.  Morphology of intracellularly labeled canine intracardiac ganglion cells , 1991, The Journal of comparative neurology.

[131]  H. Coleridge,et al.  Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. , 1980, The Journal of physiology.

[132]  M. Andresen,et al.  ARTERIAL BARORECEPTOR RESETTING: CONTRIBUTIONS OF CHRONIC AND ACUTE PROCESSES , 1989, Clinical and experimental pharmacology & physiology. Supplement.

[133]  J. Ardell,et al.  Chronic decentralization of the heart differentially remodels canine intrinsic cardiac neuron muscarinic receptors. , 2001, American journal of physiology. Heart and circulatory physiology.

[134]  R. Cardinal,et al.  The heart reinnervates after transplantation. , 2000, The Annals of thoracic surgery.

[135]  G L Gebber,et al.  Bispectral analysis of complex patterns of sympathetic nerve discharge. , 1996, The American journal of physiology.

[136]  CarloPappone,et al.  Pulmonary Vein Denervation Enhances Long-Term Benefit After Circumferential Ablation for Paroxysmal Atrial Fibrillation , 2004 .

[137]  C. Sylvén Angina pectoris. Clinical characteristics, neurophysiological and molecular mechanisms , 1989, Pain.

[138]  P. Sleight,et al.  Action potentials in fibres from receptors in the epicardium and myocardium of the dog's left ventricle. , 1965, The Journal of physiology.

[139]  D. Zipes,et al.  Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. , 1998, Circulation.

[140]  David L. Glanzman,et al.  The cellular basis of classical conditioning in Aplysia californica — it's less simple than you think , 1995, Trends in Neurosciences.

[141]  J. Armour Cardiac effects of electrically induced intrathoracic autonomic reflexes. , 1988, Canadian journal of physiology and pharmacology.

[142]  W. C. Randall,et al.  Interrelationship of architecture and function of the right ventricle. , 1970, The American journal of physiology.