An Application of Walsh Functions for Fredholm-Hammerstein Integro-Differential Equations

A Walsh function method, expansion method, has been proposed in order to solve the Fredholm-Hammerstein integro-differential equations(FHID). This method transforms the FHID equation with the given conditions into algebraic equations via Newton-Cotes collocation points and operational matrix of integration. The solution of this system yields the Walsh coefficients of the solution function. Some numerical results are also given to illustrative the efficiency of the method.

[1]  Ing-Rong Horng,et al.  Double-shifted Chebyshev series for convolution integral and integral equations , 1985 .

[2]  Chyi Hwang,et al.  Solution of integral equations via Laguerre polynomials , 1982 .

[3]  Yadollah Ordokhani,et al.  Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions , 2006, Appl. Math. Comput..

[4]  Mehmet Sezer,et al.  Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations , 2005, J. Frankl. Inst..

[5]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[6]  Christopher T. H. Baker,et al.  A perspective on the numerical treatment of Volterra equations , 2000 .

[7]  G. Phillips,et al.  Theory and application of numerical analysis , 1973 .

[8]  C. F. Chen,et al.  A walsh series direct method for solving variational problems , 1975 .

[9]  C. F. Chen,et al.  Solving integral equations via Walsh functions , 1979 .

[10]  Mohsen Razzaghi,et al.  Solutions of convolution integral and Fredholm integral equations via double Fourier series , 1990 .

[11]  Chi-Hsu Wang,et al.  Explicit solutions of integral equations via block pulse functions , 1982 .

[12]  Farshid Mirzaee,et al.  Solving linear integro-differential equations system by using rationalized Haar functions method , 2004, Appl. Math. Comput..

[13]  Bruce G. Sloss,et al.  A Walsh function method for a non-linear Volterra integral equation , 2003, J. Frankl. Inst..

[14]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[15]  Rong-Yeu Chang,et al.  Solutions of integral equations via shifted Legendre polynomials , 1985 .