On linear co-positive Lyapunov functions for sets of linear positive systems

In this paper we derive necessary and sufficient conditions for the existence of a common linear co-positive Lyapunov function for a finite set of linear positive systems. Both the state dependent and arbitrary switching cases are considered. Our results reveal an interesting characterisation of ''linear'' stability for the arbitrary switching case; namely, the existence of such a linear Lyapunov function can be related to the requirement that a number of extreme systems are Metzler and Hurwitz stable. Examples are given to illustrate the implications of our results.

[1]  Keith Godfrey,et al.  Compartmental Models and Their Application , 1983 .

[2]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[3]  ShortenRobert,et al.  A positive systems model of TCP-like congestion control , 2006 .

[4]  Robert Shorten,et al.  Applications of Linear Co-positive Lyapunov Functions for Switched Linear Positive Systems , 2009 .

[5]  Robert Shorten,et al.  On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems , 2007, IEEE Transactions on Automatic Control.

[6]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[7]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[8]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[9]  M. Seetharama Gowda,et al.  On some properties of P-matrix sets , 1999 .

[10]  Charles R. Johnson Sufficient conditions for D-stability , 1974 .

[11]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[12]  Charles R. Johnson,et al.  Sign controllability of a nonnegative matrix and a positive vector , 1993 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Fabian R. Wirth,et al.  A positive systems model of TCP-like congestion control: asymptotic results , 2006, IEEE/ACM Transactions on Networking.

[15]  Jens Zander,et al.  Performance of optimum transmitter power control in cellular radio systems , 1992 .

[16]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[17]  Robert Shorten,et al.  On the Stability of Switched Positive Linear Systems , 2007, IEEE Transactions on Automatic Control.

[18]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[19]  A. Jadbabaie,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  Gerard J. Foschini,et al.  A simple distributed autonomous power control algorithm and its convergence , 1993 .

[21]  Elena Virnik,et al.  Analysis of positive descriptor systems , 2008 .

[22]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[23]  Eduardo D. Sontag,et al.  Diagonal stability of a class of cyclic systems and its connection with the secant criterion , 2006, Autom..

[24]  John A. Jacquez,et al.  Qualitative Theory of Compartmental Systems , 1993, SIAM Rev..

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  Wassim M. Haddad,et al.  Stability theory for nonnegative and compartmental dynamical systems with time delay , 2004, Proceedings of the 2004 American Control Conference.