mbsolve: An open-source solver tool for the Maxwell-Bloch equations

[1]  Richard Phillips Feynman,et al.  Geometrical Representation of the Schrödinger Equation for Solving Maser Problems , 1957 .

[2]  F. Arecchi,et al.  Theory of optical maser amplifiers , 1965 .

[3]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[4]  S. Mccall,et al.  Self-Induced Transparency by Pulsed Coherent Light , 1967 .

[5]  H. Risken,et al.  Self‐Pulsing in Lasers , 1968 .

[6]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[7]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[8]  J. Eberly,et al.  N-Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics , 1981 .

[9]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[10]  Ziółkowski,et al.  Ultrafast pulse interactions with two-level atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[12]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[13]  A. M. Basharov,et al.  Self-Induced Transparency , 1999 .

[14]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[15]  A. Bourgeade,et al.  Introducing physical relaxation terms in Bloch equations , 2001 .

[16]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[17]  Richard W. Ziolkowski,et al.  Coupled Maxwell-Pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study , 2002 .

[18]  Brigitte Bidégaray,et al.  Time discretizations for Maxwell‐Bloch equations , 2003 .

[19]  A. I. Solomon,et al.  Constraints on relaxation rates for N-level quantum systems , 2003, quant-ph/0312231.

[20]  S. Gong,et al.  Propagation of a few-cycle laser pulse in a V-type three-level system , 2005 .

[21]  Olivier Saut,et al.  Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals , 2006, J. Comput. Phys..

[22]  J. Mørk,et al.  Numerical investigation of electromagnetically induced transparency in a quantum dot structure. , 2007, Optics express.

[23]  S. Corzine,et al.  Coherent instabilities in a semiconductor laser with fast gain recovery , 2007 .

[24]  C. Menyuk,et al.  Self-induced transparency modelocking of quantum cascade lasers. , 2009, Physical review letters.

[25]  S. Corzine,et al.  Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser , 2010 .

[26]  F. Kärtner,et al.  Dynamics of actively mode-locked Quantum Cascade Lasers. , 2010, Optics express.

[27]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[28]  Eckehard Schöll,et al.  Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers , 2010 .

[29]  Abraham Nitzan,et al.  Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions , 2011, 1104.3325.

[30]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[31]  Ulf Osterberg,et al.  Multilevel Maxwell-Bloch simulations in inhomogeneously broadened media. , 2011, Optics express.

[32]  S. Schirmer,et al.  Limits on the decay rate of quantum coherence and correlation , 2012 .

[33]  E. Linfield,et al.  Laser-seeding dynamics with few-cycle pulses: Maxwell-Bloch finite-difference time-domain simulations of terahertz quantum cascade lasers , 2013 .

[34]  C. Menyuk,et al.  Quantum coherent saturable absorption for mid-infrared ultra-short pulses. , 2014, Optics express.

[35]  C. Jirauschek,et al.  Modeling techniques for quantum cascade lasers , 2014, 1412.3563.

[36]  Alexei Deinega,et al.  Self-interaction-free approaches for self-consistent solution of the Maxwell-Liouville equations , 2014 .

[37]  A. Belyanin,et al.  Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time. , 2014, Optics express.

[38]  Qing Hu,et al.  Terahertz laser frequency combs , 2014, Nature Photonics.

[39]  Qing Hu,et al.  Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. , 2016, Optics express.

[40]  H. Bungartz,et al.  Solving the Maxwell-Bloch equations efficiently on parallel architectures , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[41]  Michael Riesch,et al.  Numerical Method for the Maxwell-Liouville-von Neumann Equations using Efficient Matrix Exponential Computations , 2017, 1710.09799.

[42]  U. Morgner,et al.  Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers , 2017, 1710.00739.

[43]  Jesper Mørk,et al.  Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers , 2017 .

[44]  Dmitri L. Boiko,et al.  Low-Threshold RNGH Instabilities in Quantum Cascade Lasers , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  Mattias Beck,et al.  Evidence of linear chirp in mid-infrared quantum cascade lasers , 2018, Optica.

[46]  C. Jirauschek,et al.  Efficient Simulation of the Quantum Cascade Laser Dynamics beyond the Rotating Wave Approximation , 2018 .

[47]  Hans-Joachim Bungartz,et al.  Performance evaluation of numerical methods for the Maxwell–Liouville–von Neumann equations , 2018 .

[48]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[49]  C. Jirauschek,et al.  Dynamic Simulations of Quantum Cascade Lasers Beyond the Rotating Wave Approximation , 2018, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC).

[50]  C. Sirtori,et al.  Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking. , 2017, Optics express.

[51]  Michael Riesch,et al.  Analyzing the positivity preservation of numerical methods for the Liouville-von Neumann equation , 2018, J. Comput. Phys..

[52]  Hans-Joachim Bungartz,et al.  Numerical Simulation of the Quantum Cascade Laser Dynamics on Parallel Architectures , 2019, PASC.

[53]  G. Slavcheva,et al.  Ultrafast pulse phase shifts in a charged-quantum-dot–micropillar system , 2018, Physical Review B.

[54]  C. Jirauschek,et al.  Completely Positive Trace Preserving Numerical Methods for Long-Term Generalized Maxwell-Bloch Simulations , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[55]  C. Jirauschek,et al.  Optoelectronic Device Simulations Based on Macroscopic Maxwell–Bloch Equations , 2019, Advanced Theory and Simulations.

[56]  Cambridge,et al.  Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity , 2020, ACS photonics.

[57]  arolina,et al.  Propagation of optically tunable coherent radiation in a medium of asymmetric molecules , 2020 .

[58]  Tien D. Nguyen,et al.  bertha: Project skeleton for scientific software , 2019, PloS one.

[59]  C. Jirauschek,et al.  Completely Positive Trace Preserving Methods for the Lindblad Equation , 2020, 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[60]  K. Słowik,et al.  Propagation of optically tunable coherentradiation in a medium of asymmetric molecules , 2020, 2002.05469.