The dense multiple-vector tensor-vector product: An initial study
暂无分享,去创建一个
Raf Vandebril | Karl Meerbergen | Nick Vannieuwenhoven | Nick Vanbaelen | K. Meerbergen | R. Vandebril | N. Vannieuwenhoven | Nick Vanbaelen
[1] P. Paatero. A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .
[2] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[3] Endong Wang,et al. Intel Math Kernel Library , 2014 .
[4] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[5] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[6] R. Bro,et al. PARAFAC and missing values , 2005 .
[7] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[8] Ivan V. Oseledets,et al. Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case , 2010, SIAM J. Sci. Comput..
[9] Andrzej Cichocki,et al. Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.
[11] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..
[12] Charles Van Loan,et al. Block Tensor Unfoldings , 2011, SIAM J. Matrix Anal. Appl..
[13] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[14] Morten Mørup,et al. Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..
[15] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[16] Lieven De Lathauwer,et al. Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..
[17] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[18] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[19] F. Chinesta,et al. On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .
[20] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[21] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[22] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[23] I. V. Oseledets,et al. Minimization methods for approximating tensors and their comparison , 2006 .
[24] Fred G. Gustavson,et al. Recursion leads to automatic variable blocking for dense linear-algebra algorithms , 1997, IBM J. Res. Dev..
[25] Robert A. van de Geijn,et al. Anatomy of high-performance matrix multiplication , 2008, TOMS.
[26] Robert A. van de Geijn,et al. Programming matrix algorithms-by-blocks for thread-level parallelism , 2009, TOMS.
[27] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[28] Wenyu Sun,et al. A modified Newton's method for best rank-one approximation to tensors , 2010, Appl. Math. Comput..
[29] Rasmus Bro,et al. Improving the speed of multiway algorithms: Part II: Compression , 1998 .
[30] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[31] Shuzhong Zhang,et al. Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..
[32] Liqun Qi,et al. On the successive supersymmetric rank‐1 decomposition of higher‐order supersymmetric tensors , 2007, Numer. Linear Algebra Appl..
[33] R. C. Whaley,et al. Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005, Softw. Pract. Exp..
[34] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[35] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[36] Chikio Hayashi,et al. A NEW ALGORITHM TO SOLVE PARAFAC-MODEL , 1982 .
[37] Ulrich Rüde,et al. Expression Templates Revisited: A Performance Analysis of Current Methodologies , 2011, SIAM J. Sci. Comput..
[38] Berkant Savas,et al. Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.
[39] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[40] Robert A. van de Geijn,et al. FLAME: Formal Linear Algebra Methods Environment , 2001, TOMS.
[41] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[42] Tamara G. Kolda,et al. Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.
[43] Antonio Falcó,et al. Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.
[44] Antoine Petitet,et al. Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005 .
[45] Jack J. Dongarra,et al. Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..
[46] Robert A. van de Geijn,et al. A Runtime System for Programming Out-of-Core Matrix Algorithms-by-Tiles on Multithreaded Architectures , 2012, TOMS.
[47] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[48] Yuefan Deng,et al. New trends in high performance computing , 2001, Parallel Computing.
[49] A. Velazquez,et al. Compression of aerodynamic databases using high-order singular value decomposition , 2010 .
[50] Rasmus Bro,et al. The N-way Toolbox for MATLAB , 2000 .
[51] Tze Meng Low,et al. Exploiting Symmetry in Tensors for High Performance , 2013, ArXiv.