Thickness- and Twist-Angle-Dependent Interlayer Excitons in Metal Monochalcogenide Heterostructures.

Interlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps. Time-dependent photoluminescense spectroscopy unveils considerably longer interlayer exciton lifetimes with respect to intralayer ones, thus confirming their nature. The linear Stark effect yields a bound electron-hole pair whose separation d is just (3.6 ± 0.1) Å with d being very close to dSe = 3.4 Å which is the calculated interfacial Se separation. The envelope of IX is twist-angle-dependent and describable by superimposed emissions that are nearly equally spaced in energy, as if quantized due to localization induced by the small moiré periodicity. These heterostacks are characterized by extremely flat interfacial valence bands making them prime candidates for the observation of magnetism or other correlated electronic phases upon carrier doping.

[1]  Kenji Watanabe,et al.  Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures , 2022, Science.

[2]  Xiaoqin Li,et al.  Excitons in semiconductor moiré superlattices , 2022, Nature Nanotechnology.

[3]  Kenji Watanabe,et al.  Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure , 2021, Nature photonics.

[4]  C. N. Lau,et al.  Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor , 2020, Science Advances.

[5]  R. Sankar,et al.  Multilayer GaSe/InSe Heterointerface-Based Devices for Charge Transport and Optoelectronics , 2020 .

[6]  J. Kong,et al.  Unconventional ferroelectricity in moiré heterostructures , 2020, Nature.

[7]  J. Shan,et al.  Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect , 2020, Nature Nanotechnology.

[8]  Jun Jiang,et al.  Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe , 2020, Science.

[9]  Kenji Watanabe,et al.  Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures. , 2020, Physical review letters.

[10]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[11]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[12]  Arvind Kumar,et al.  Interfacial Charge Transfer and Gate Induced Hysteresis in Monochalcogenide InSe/GaSe Heterostructures. , 2020, ACS applied materials & interfaces.

[13]  L. Balents,et al.  Noncollinear phases in moiré magnets , 2020, Proceedings of the National Academy of Sciences.

[14]  C. Robert,et al.  Giant Stark splitting of an exciton in bilayer MoS2 , 2020, Nature Nanotechnology.

[15]  Kenji Watanabe,et al.  Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures , 2019, Science Advances.

[16]  J. Howarth,et al.  Design of van der Waals interfaces for broad-spectrum optoelectronics , 2019, Nature Materials.

[17]  Xiaodong Xu,et al.  Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions , 2019, Nature Materials.

[18]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[19]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[20]  Xiaodong Xu,et al.  Optical generation of high carrier densities in 2D semiconductor heterobilayers , 2019, Science Advances.

[21]  B. Gerardot,et al.  Spin–layer locking of interlayer excitons trapped in moiré potentials , 2019, Nature Materials.

[22]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[23]  B. Gerardot,et al.  Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide , 2019, Nature Communications.

[24]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[25]  T. Taniguchi,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[26]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[27]  S. Haigh,et al.  Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures , 2018, 2D Materials.

[28]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[29]  Takashi Taniguchi,et al.  Room-temperature electrical control of exciton flux in a van der Waals heterostructure , 2018, Nature.

[30]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[31]  Kenji Watanabe,et al.  Twistable electronics with dynamically rotatable heterostructures , 2018, Science.

[32]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[33]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[34]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[35]  Kyeongjae Cho,et al.  Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2-WSe2 Heterobilayers. , 2017, Nano letters.

[36]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[37]  B. Liu,et al.  Large-Scale Growth of High-Quality Hexagonal Boron Nitride Crystals at Atmospheric Pressure from an Fe–Cr Flux , 2017 .

[38]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[39]  M. Combescot,et al.  Bose–Einstein condensation and indirect excitons: a review , 2017, Reports on progress in physics. Physical Society.

[40]  F. Jahnke,et al.  Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.

[41]  Kaiyou Wang,et al.  Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures , 2017, Nanotechnology.

[42]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[43]  Fengcheng Wu,et al.  Topological Exciton Bands in Moiré Heterojunctions. , 2016, Physical review letters.

[44]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[45]  Xiaodong Xu,et al.  Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields. , 2016, Nano letters.

[46]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[47]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[48]  B. Jonker,et al.  Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla , 2015, Nature Communications.

[49]  Laura D. Casto,et al.  Strong spin-lattice coupling in CrSiTe3 , 2015 .

[50]  Dietmar Stalke,et al.  Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination , 2015, Journal of applied crystallography.

[51]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[52]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[53]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[54]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[55]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[56]  K. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2012, Nature.

[57]  A. Gossard,et al.  Condensation of excitons in a trap. , 2012, Nano letters.

[58]  A. Gossard,et al.  Spontaneous coherence in a cold exciton gas , 2011, Nature.

[59]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[60]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[61]  A. Gossard,et al.  Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap. , 2009, Physical review letters.

[62]  A. Gossard,et al.  Indirect excitons in elevated traps. , 2008, Nano letters.

[63]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[64]  A. Hammack,et al.  Trapping of cold excitons in quantum well structures with laser light. , 2006, Physical review letters.

[65]  S. Simon,et al.  Charge separation of dense two-dimensional electron-hole gases: mechanism for exciton ring pattern formation. , 2004, Physical review letters.

[66]  A. L. Ivanov,et al.  Towards Bose–Einstein condensation of excitons in potential traps , 2002, Nature.

[67]  A. L. Ivanov,et al.  Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. , 2001, Physical review letters.

[68]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[69]  A. Hooker,et al.  Classical examination of the Stark effect in hydrogen , 1997 .

[70]  M. Andrés,et al.  INVESTIGATION OF NITROGEN-RELATED ACCEPTOR CENTERS IN INDIUM SELENIDE BY MEANS OF PHOTOLUMINESCENCE : DETERMINATION OF THE HOLE EFFECTIVE MASS , 1997 .

[71]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[72]  J. Harbison,et al.  Long-lived spatially indirect excitons in coupled GaAs/AlxGa1-xAs quantum wells. , 1990, Physical review. B, Condensed matter.