Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0
暂无分享,去创建一个
T. Wolf | P.G.L. Leach | N. Euler | M. Euler
[1] Fazal M. Mahomed,et al. Symmetry Lie algebras of nth order ordinary differential equations , 1990 .
[2] K. F. Sundman,et al. Mémoire sur le problème des trois corps , 1913 .
[3] Guy Grebot,et al. The Characterization of Third Order Ordinary Differential Equations Admitting a Transitive Fiber-Preserving Point Symmetry Group , 1997 .
[4] L. M. Berkovich,et al. The Method of an Exact Linearization of n-order Ordinary Differential Equations , 1996 .
[5] P. Leach. An exact invariant for a class of time‐dependent anharmonic oscillators with cubic anharmonicity , 1981 .
[6] N. Kamran,et al. Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries , 1989 .
[7] E. E. Kummer. De generali quadam aequatione differentiali tertii ordinis. , 1887 .
[8] Fazal M. Mahomed,et al. Symmetries of nonlinear differential equations and linearisation , 1987 .
[9] M. Euler,et al. A Tree of Linearisable Second-Order Evolution Equations by Generalised Hodograph Transformations , 2001, nlin/0201040.
[10] J. Liouville. Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. , 1837 .
[11] L. G. S. Duarte,et al. Linearization under nonpoint transformations , 1994 .
[12] E. E. Kummer. De generali quadam aequatione differentiali tertii ordinis , 1975 .
[13] H. Davis. Introduction to Nonlinear Differential and Integral Equations , 1964 .
[14] N. Euler. Transformation Properties of , 1997 .
[15] S. Cotsakis,et al. Symmetry, Singularities and Integrability in Complex Dynamics I: The Reduction Problem , 2000, nlin/0011001.
[16] V. N. Gusyatnikova,et al. Contact Transformations and Local Reducibility of ODE to the Form y‴=0 , 1999 .
[17] Thomas Wolf,et al. The Program CRACK for Solving PDEs in General Relativity , 1996 .
[18] B. Abraham-Shrauner,et al. HIDDEN AND CONTACT SYMMETRIES OF ORDINARY DIFFERENTIAL EQUATIONS , 1995 .
[19] Gregory J. Reid,et al. Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.
[20] A Tresse,et al. Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .