Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0

We calculate in detail the conditions which allow the most general third-order ordinary differential equation to be linearised in X′′′(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t) dt.

[1]  Fazal M. Mahomed,et al.  Symmetry Lie algebras of nth order ordinary differential equations , 1990 .

[2]  K. F. Sundman,et al.  Mémoire sur le problème des trois corps , 1913 .

[3]  Guy Grebot,et al.  The Characterization of Third Order Ordinary Differential Equations Admitting a Transitive Fiber-Preserving Point Symmetry Group , 1997 .

[4]  L. M. Berkovich,et al.  The Method of an Exact Linearization of n-order Ordinary Differential Equations , 1996 .

[5]  P. Leach An exact invariant for a class of time‐dependent anharmonic oscillators with cubic anharmonicity , 1981 .

[6]  N. Kamran,et al.  Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries , 1989 .

[7]  E. E. Kummer De generali quadam aequatione differentiali tertii ordinis. , 1887 .

[8]  Fazal M. Mahomed,et al.  Symmetries of nonlinear differential equations and linearisation , 1987 .

[9]  M. Euler,et al.  A Tree of Linearisable Second-Order Evolution Equations by Generalised Hodograph Transformations , 2001, nlin/0201040.

[10]  J. Liouville Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. , 1837 .

[11]  L. G. S. Duarte,et al.  Linearization under nonpoint transformations , 1994 .

[12]  E. E. Kummer De generali quadam aequatione differentiali tertii ordinis , 1975 .

[13]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[14]  N. Euler Transformation Properties of , 1997 .

[15]  S. Cotsakis,et al.  Symmetry, Singularities and Integrability in Complex Dynamics I: The Reduction Problem , 2000, nlin/0011001.

[16]  V. N. Gusyatnikova,et al.  Contact Transformations and Local Reducibility of ODE to the Form y‴=0 , 1999 .

[17]  Thomas Wolf,et al.  The Program CRACK for Solving PDEs in General Relativity , 1996 .

[18]  B. Abraham-Shrauner,et al.  HIDDEN AND CONTACT SYMMETRIES OF ORDINARY DIFFERENTIAL EQUATIONS , 1995 .

[19]  Gregory J. Reid,et al.  Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.

[20]  A Tresse,et al.  Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .