Single channel secure communication scheme based on synchronization of fractional-order chaotic Chua’s systems

This paper deals with the design of a fractional-order chaotic secure communication scheme. On the emitter side, a fractional-order Chua’s system is used as the drive system to generate the encrypted message signal. The input secret message is modulated in the chaotic dynamics by inclusion rather than being directly added to the chaotic signal on the transmission line. A single channel is used for transmission of the encrypted signal. At the receiver side, a step-by-step sliding mode fractional-order chaotic observer subject to unknown input is proposed as the response system to obtain robust synchronization between the emitter and the receiver. After chaos synchronization is achieved at the receiver side, an estimation of the state variables is obtained and the plaintext is recovered. Finite-time convergence of both state and unknown input estimation errors is established. The efficiency of this proposed secure communication scheme is illustrated by numerical simulations.

[1]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[2]  H. J. M. Hanley,et al.  Experimental Verification of the , 1965 .

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[5]  Leon O. Chua,et al.  Chua's circuit 10 years later , 1994, Int. J. Circuit Theory Appl..

[6]  J. Barbot,et al.  Sliding mode observer for triangular input form , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[8]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[9]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[10]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[11]  Mohamed Djemai,et al.  Sliding Mode Observers , 2002 .

[12]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[13]  Shervin Erfani,et al.  Evaluation and realization of continued-fraction expansion revisited , 2002, Comput. Electr. Eng..

[14]  Clark R. Dohrmann,et al.  Adaptive Sliding Mode Control , 2002 .

[15]  Chung-Chun Kung,et al.  Adaptive fuzzy sliding mode controller design , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[16]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[17]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[18]  Driss Boutat,et al.  Sliding mode observers and observability singularity in chaotic synchronization , 2004 .

[19]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[20]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[22]  A. Charef Modeling and Analog Realization of the Fundamental Linear Fractional Order Differential Equation , 2006 .

[23]  Gao Jin-feng Chaos in Fractional-Order Chua's System and Its Synchronization , 2007 .

[24]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[25]  Shujun Li,et al.  Determination of the Parameters for a Lorenz System and Application to Break the Security of Two-channel Chaotic Cryptosystems , 2008 .

[26]  Ivo Petras,et al.  A note on the fractional-order Chua’s system , 2008 .

[27]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[28]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[29]  Yanbin Zhang,et al.  Experimental Verification of a Four-Dimensional Chua's System and its fractional Order Chaotic attractors , 2009, Int. J. Bifurc. Chaos.

[30]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[31]  Santo Banerjee,et al.  Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption , 2010 .

[32]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[33]  Ahmet Bedri Ozer,et al.  A method for designing strong S-Boxes based on chaotic Lorenz system , 2010 .

[34]  Ivo Petrás,et al.  Fractional-Order Memristor-Based Chua's Circuit , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  Ljupco Kocarev,et al.  Chaos-Based Cryptography - Theory, Algorithms and Applications , 2011, Chaos-Based Cryptography.

[36]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[37]  Mehmet Önder Efe,et al.  Fractional Order Systems in Industrial Automation—A Survey , 2011, IEEE Transactions on Industrial Informatics.

[38]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[39]  Tsung-Chih Lin,et al.  Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems , 2011 .

[40]  Branislav Jovic Synchronization Techniques for Chaotic Communication Systems , 2011 .

[41]  W. Zdzislaw,et al.  Matlab Solutions of Chaotic Fractional Order Circuits , 2011 .

[42]  Xiaopeng Zhang,et al.  Modified projective synchronization of fractional-order chaotic systems via active sliding mode control , 2012 .

[43]  Giuseppe Grassi,et al.  Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems , 2012 .

[44]  Sirma Yavuz,et al.  Designing chaotic S-boxes based on time-delay chaotic system , 2013 .

[45]  Dominik Sierociuk,et al.  Experimental Evidence of Variable-Order Behavior of Ladders and Nested Ladders , 2013, IEEE Transactions on Control Systems Technology.

[46]  Ling-Dong Zhao,et al.  Finite-Time Synchronizing Fractional-Order Chaotic Volta System with Nonidentical Orders , 2013 .

[47]  Chun-Lai Li,et al.  Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System , 2013 .

[48]  S. Guermah,et al.  Synchronization of the fractional-order chaotic Chua's system via sliding mode observer , 2013, 3rd International Conference on Systems and Control.

[49]  Xiaomei Yan,et al.  Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[50]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[51]  Hsien-Keng Chen,et al.  Implementation of the fractional-Order Chen-Lee System by Electronic Circuit , 2013, Int. J. Bifurc. Chaos.

[52]  Chongxin Liu,et al.  Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control , 2014 .

[53]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[54]  Bin Wang,et al.  Active Sliding Mode for Synchronization of a Wide Class of Four-Dimensional Fractional-Order Chaotic Systems , 2014 .

[55]  Longge Zhang,et al.  Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control , 2014 .

[56]  Mauricio Zapateiro,et al.  A secure communication system based on a modified chaotic chua oscillator , 2014 .

[57]  Weisheng Chen,et al.  Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems , 2014 .

[58]  Xiaomin Tian,et al.  On Modified Second-order Sliding Mode Synchronization of Two Different Fractional Order Hyperchaotic Systems , 2015, MUE 2015.

[59]  Juan Yang,et al.  Sliding-Mode Synchronization Control for Uncertain Fractional-Order Chaotic Systems with Time Delay , 2015, Entropy.

[60]  Jing Zhang,et al.  Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability , 2016, Int. J. Syst. Sci..

[61]  Abdesselem Boulkroune,et al.  Fuzzy Adaptive Synchronization of Uncertain Fractional-Order Chaotic Systems , 2016, Advances in Chaos Theory and Intelligent Control.

[62]  M. Bettayeb,et al.  Observation and sliding mode observer for nonlinear fractional-order system with unknown input. , 2016, ISA transactions.

[63]  Sundarapandian Vaidyanathan,et al.  Advances in Chaos Theory and Intelligent Control , 2016, Advances in Chaos Theory and Intelligent Control.

[64]  Dong Li,et al.  Impulsive synchronization of fractional order chaotic systems with time-delay , 2016, Neurocomputing.

[65]  Elham Amini Boroujeni,et al.  An Iterative LMI-Based Reduced-Order Observer Design for Fractional-Order Chaos Synchronization , 2016, Circuits Syst. Signal Process..

[66]  Okyay Kaynak,et al.  Robust ${H_\infty }$-Based Synchronization of the Fractional-Order Chaotic Systems by Using New Self-Evolving Nonsingleton Type-2 Fuzzy Neural Networks , 2016, IEEE Transactions on Fuzzy Systems.

[67]  Shuyi Shao,et al.  Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance , 2016 .

[68]  Chu Yuan-zheng,et al.  Synchronization of fractional order chaotic systems via a novel sliding mode control , 2016, 2016 35th Chinese Control Conference (CCC).

[69]  Luis Abraham Sánchez-Gaspariano,et al.  On the Electronic Realizations of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs , 2017, Fractional Order Control and Synchronization of Chaotic Systems.

[70]  Sundarapandian Vaidyanathan,et al.  Fractional Order Control and Synchronization of Chaotic Systems , 2017, Studies in Computational Intelligence.

[71]  Ahmet Bedri Özer,et al.  A new S-box construction method based on the fractional-order chaotic Chen system , 2017, Signal Image Video Process..

[72]  Adel Ouannas,et al.  On a function projective synchronization scheme for non-identical Fractional-order chaotic (hyperchaotic) systems with different dimensions and orders , 2017 .

[73]  Milad Mohadeszadeh,et al.  Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication , 2019, IEEE/CAA Journal of Automatica Sinica.