Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport

A new adaptive cell average spectral element method (SEM) is proposed to solve the time-dependent Wigner equation for transport in quantum devices. The proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to reduce the high-dimensional computational cost of Wigner functions while preserving exactly the mass conservation for the numerical solutions. The key feature of the proposed method is an analytical relation between the cell averages of the Wigner function in the k-space (local electron density for finite range velocity) and the point values of the distribution, resulting in fast transforms between the local electron density and local fluxes of the discretized Wigner equation via the fast sine and cosine transforms. Numerical results with the proposed method are provided to demonstrate its high accuracy, conservation, convergence and a reduction of the cost using adaptive meshes.

[1]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[2]  Kerson Huang Statistical Mechanics, 2nd Edition , 1963 .

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[5]  W. Frensley,et al.  Wigner-function model of a resonant-tunneling semiconductor device. , 1987, Physical review. B, Condensed matter.

[6]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[7]  Wei Cai,et al.  Essentially Nonoscillatory Spectral Fourier Method for Shocks Wave Calculations , 1989 .

[8]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[9]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[10]  Christian Ringhofer,et al.  An Analysis of the Quantum Liouville Equation , 1989 .

[11]  Effect of inelastic processes on the self-consistent potential in the resonant-tunneling diode , 1989 .

[12]  Ferry,et al.  Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  Christian Ringhofer,et al.  A spectral method for the numerical simulation of quantum tunneling phenomena , 1990 .

[15]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[16]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[17]  F. A. Buot,et al.  The methodology of simulating particle trajectories through tunneling structures using a Wigner distribution approach , 1991 .

[18]  Ami Harten,et al.  Cell averaging Chebyshev methods for hyperbolic problems , 1992 .

[19]  Christian Ringhoffer A spectral collocation technique for the solution of the Wigner-Poisson Problem , 1992 .

[20]  A. Arnold,et al.  Operator splitting methods applied to spectral discretizations of quantum transport equations , 1995 .

[21]  A. Arnold,et al.  An Operator Splitting Method for the Wigner--Poisson Problem , 1996 .

[22]  Bryan A. Biegel,et al.  Quantum electronic device simulation , 1997 .

[23]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[24]  P. Zhao Wigner-Poisson simulation of quantum devices , 2000 .

[25]  Carlo Jacoboni,et al.  QUANTUM TRANSPORT AND ITS SIMULATION WITH THE WIGNER-FUNCTION APPROACH , 2001 .

[26]  T. Goudon,et al.  ON A DISCRETE MODEL FOR QUANTUM TRANSPORT IN SEMI-CONDUCTOR DEVICES , 2002 .

[27]  DEFORMATION QUANTIZATION: QUANTUM MECHANICS LIVES AND WORKS IN PHASE-SPACE , 2001, hep-th/0110114.

[28]  Thierry Goudon,et al.  Analysis of a Semidiscrete Version of the Wigner Equation , 2002, SIAM J. Numer. Anal..

[29]  L. Demeio Splitting-Scheme Solution of the Collisionless Wigner Equation with Non-Parabolic Band Profile , 2003 .

[30]  L. Shifren,et al.  A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode , 2003 .

[31]  Quantum mechanics another way , 2004, physics/0405029.

[32]  Prem K. Kythe,et al.  Handbook of Computational Methods for Integration , 2004 .

[33]  S. Selberherr,et al.  Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices , 2004 .

[34]  P. Bordone,et al.  The Wigner-function approach to non-equilibrium electron transport , 2004 .

[35]  D. Querlioz,et al.  A Study of Quantum Transport in End-of-Roadmap DG-MOSFETs Using a Fully Self-Consistent Wigner Monte Carlo Approach , 2006, IEEE Transactions on Nanotechnology.

[36]  Hans Kosina,et al.  Wigner function approach to nano device simulation , 2006, Int. J. Comput. Sci. Eng..

[37]  Carlo Jacoboni,et al.  Electron dynamics inside short-coherence systems , 2006 .

[38]  S. Selberherr,et al.  Current transport models for nanoscale semiconductor devices , 2008 .