Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity

We present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut (1981) model, valid at any order in eccentricity, obliquity and spin. We demonstrate both analytically and numerically that except if the system was formed with a nearly circular orbit (e < 0.2), consistently solving the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at 2nd order in eccentricity, as done in all previous studies, lead to quantitatively and sometimes even qualitatively erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders of magnitude. These discrepancies can by no means be justified by invoking the uncertainty in the tidal quality factors. Based on these complete, consistent calculations, we revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets. We show that even though tidal dissipation does provide a substantial contribution to the planet’s heat budget and can explain some of the moderately bloated hot-Jupiters, this mechanism can not explain alone the properties of the most inflated objects, including HD 209 458 b. Indeed, solving the complete tidal equations shows that enhanced tidal dissipation and thus orbit circularization occur too early during the planet’s evolution to provide enough extra energy at the present epoch. In that case either a third, so far undetected, low-mass companion must be present to keep exciting the eccentricity of the giant planet, or other mechanisms – stellar irradiation induced surface winds dissipating in the planet’s tidal bulges and thus reaching the convective layers, inefficient flux transport by convection in the planet’s interior – must be invoked, together with tidal dissipation, to provide all the pieces of the abnormally large exoplanet puzzle.

[1]  O. Tamuz,et al.  OGLE-TR-211 - a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic , 2007, 0711.3978.

[2]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[3]  P. Cassen,et al.  Contribution of tidal dissipation to lunar thermal history. , 1978 .

[4]  Adam Burrows,et al.  COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS , 2009, 0902.3998.

[5]  S. Meibom,et al.  A Robust Measure of Tidal Circularization in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the Open Cluster M35 , 2004, astro-ph/0412147.

[6]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[7]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[8]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[9]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[10]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[11]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[12]  C. Lackner,et al.  DYNAMICAL TIDES IN ROTATING PLANETS AND STARS , 2008, 0812.1028.

[13]  W. M. Kaula,et al.  Tesseral harmonics of the gravitational field and geodetic datum shifts derived from camera observations of satellites , 1963 .

[14]  John Asher Johnson,et al.  ON THE SPIN–ORBIT MISALIGNMENT OF THE XO-3 EXOPLANETARY SYSTEM , 2009, 0902.3461.

[15]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[16]  B. Levrard A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state , 2007, 0710.5651.

[17]  J. Fortney,et al.  INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS , 2009, 0907.1268.

[18]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[19]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[20]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[21]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[22]  Th. Henning,et al.  Binarity of transit host stars - Implications for planetary parameters , 2009, 0902.2179.

[23]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[24]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[25]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[26]  J. Wisdom Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .

[27]  W. Benz,et al.  Birth and fate of hot-Neptune planets , 2005, astro-ph/0512091.

[28]  M. Holman,et al.  The Transit Light Curve Project. III. Tres Transits of TrES-1 , 2006, astro-ph/0611404.

[29]  Peter Bodenheimer,et al.  The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultrashort Periods , 2003, astro-ph/0303362.

[30]  J. Laskar,et al.  Long-term evolution of the spin of Mercury: I. Effect of the obliquity and core–mantle friction , 2009, 0908.3912.

[31]  D. Lin,et al.  TIDAL DISSIPATION IN ROTATING SOLAR-TYPE STARS , 2007 .

[32]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[33]  Steven Soter,et al.  Q in the solar system , 1966 .

[34]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[35]  W. M. Kaula TIDAL DISSIPATION IN THE MOON , 1963 .

[36]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[37]  A. Barker,et al.  On the tidal evolution of Hot Jupiters on inclined orbits , 2009, 0902.4563.

[38]  D. Lin,et al.  Spin-Orbit Evolution of Short-Period Planets , 2004, astro-ph/0408191.

[39]  J. Laskar,et al.  Tidal dissipation within hot Jupiters : a new appraisal , 2006, astro-ph/0612044.

[40]  T. Gold,et al.  On the Eccentricity of Satellite Orbits in the Solar System , 1963 .

[41]  J. Leconte,et al.  Structure and evolution of the first CoRoT exoplanets: probing the brown dwarf/planet overlapping mass regime , 2009, 0907.2669.

[42]  R. Greenberg FREQUENCY DEPENDENCE OF TIDAL Q , 2009 .

[43]  J. Beuzit,et al.  HD 80606 b, a planet on an extremely elongated orbit , 2001, astro-ph/0106256.

[44]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[45]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[46]  M. Holman,et al.  THE TRANSIT LIGHT CURVE PROJECT. XI. SUBMILLIMAGNITUDE PHOTOMETRY OF TWO TRANSITS OF THE BLOATED PLANET WASP-4b , 2009, 0901.4346.

[47]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[48]  F. Allard,et al.  The Evolution of Irradiated Planets: Application to Transits , 2004, astro-ph/0401487.