Expressão transiente de proteínas recombinantes utilizando sistema de planta

vii CAPITULO I: Expressao transiente de proteinas recombinantes utilizando sistema de planta 1 1Introducao Geral 1 1Expressao de proteinas recombinantes em planta: relevância para a area biotecnologica e vantagens 1 1.2Expressao de proteinas recombinantes em planta: desafios e limitacoes .. 3 1.3Estrategias de expressao de proteinas recombinantes em sistema de planta : escolha da planta e do tipo de transformacao 6 1.3.1Sistema de expressao por meio de transformacao nuclear estavel e transplastomico: vantagens e limitacoes 7 1.3.2Sistema de expressao por meio de cultura celular: vantagens e limitacoes 10 1.3.3Sistema de expressao por meio de transformacao transiente: vantagens e desvantagens 11 1.4Perspectivas da utilizacao do sistema de planta na area biotecnologica .. 15 2Objetivo geral do trabalho 17 3Objetivos especificos 17 CAPITULO II: Expressao e montagem de “virus like particles” de norovirus em planta utilizando supressor viral de silenciamento genico 18 1Introducao 18 1.1Norovirus patogenia e epidemiologia, taxonomia e caracteristicas estruturais 18 1.2Sistemas de expressao de VLP de norovirus 23 1.3Silenciamento genico e proteinas virais supressoras de silenciamento .... 27 2Objetivo Geral 33 3Objetivos especificos 33

[1]  Michael D. McLean,et al.  Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. , 2012, Plant biotechnology journal.

[2]  Qiang Chen,et al.  Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations , 2012, Plant Cell Reports.

[3]  H. Park,et al.  Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase , 2012, Virus Genes.

[4]  T. Vesikari,et al.  Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. , 2011, Vaccine.

[5]  A. Inoue-Nagata,et al.  Complete genome nucleotide sequence of Pepper mild mottle virus isolated in the Federal District, Brazil , 2010 .

[6]  A. Inoue-Nagata,et al.  Complete genome sequence of Brugmansia suaveolens mottle virus, a potyvirus from an ornamental shrub , 2010, Archives of Virology.

[7]  V. Hytönen,et al.  A comparison of methods for purification and concentration of norovirus GII-4 capsid virus-like particles , 2010, Archives of Virology.

[8]  C. Marusic,et al.  Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants , 2010, Bioengineered bugs.

[9]  N. Aoki,et al.  Binding of Norovirus Virus-Like Particles (VLPs) to Human Intestinal Caco-2 Cells and the Suppressive Effect of Pasteurized Bovine Colostrum on This VLP Binding , 2010, Bioscience, biotechnology, and biochemistry.

[10]  A. Inoue-Nagata,et al.  Natural infection of Nicandra physaloides by Tomato severe rugose virus in Brazil , 2009, Journal of General Plant Pathology.

[11]  H. Daniell,et al.  Plant-made vaccine antigens and biopharmaceuticals , 2009, Trends in Plant Science.

[12]  G. Lomonossoff,et al.  pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. , 2009, Plant biotechnology journal.

[13]  B. Hjelm,et al.  A DNA replicon system for rapid high‐level production of virus‐like particles in plants , 2009, Biotechnology and bioengineering.

[14]  P. Verma,et al.  Plants as bioreactors for the production of vaccine antigens , 2009, Biotechnology Advances.

[15]  C Russell Middaugh,et al.  Physical stabilization of Norwalk virus-like particles. , 2008, Journal of pharmaceutical sciences.

[16]  K. McCue,et al.  pBINPLUS/ARS: an improved plant transformation vector based on pBINPLUS. , 2008, BioTechniques.

[17]  B. Hjelm,et al.  An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. , 2008, Vaccine.

[18]  J. Lindbo High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors , 2007, BMC biotechnology.

[19]  R. Fischer,et al.  Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. , 2007, The Journal of general virology.

[20]  M. Xia,et al.  Norovirus capsid protein expressed in yeast forms virus‐like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts , 2007, Journal of medical virology.

[21]  Zhong Huang,et al.  Virus-like particles production in green plants. , 2006, Methods.

[22]  T. Vedvick,et al.  Conformational Stability and Disassembly of Norwalk Virus-like Particles , 2006, Journal of Biological Chemistry.

[23]  A. M. Hutson,et al.  Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. , 2006, Plant biotechnology journal.

[24]  M. Wydro,et al.  Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. , 2006, Acta biochimica Polonica.

[25]  R. Hellens,et al.  Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants , 2005, Plant Methods.

[26]  M. Hardy,et al.  Norovirus protein structure and function. , 2005, FEMS microbiology letters.

[27]  D. Bisaro,et al.  Adenosine Kinase Inhibition and Suppression of RNA Silencing by Geminivirus AL2 and L2 Proteins , 2005, Journal of Virology.

[28]  A. M. Hutson,et al.  The 3′ End of Norwalk Virus mRNA Contains Determinants That Regulate the Expression and Stability of the Viral Capsid Protein VP1: a Novel Function for the VP2 Protein , 2003, Journal of Virology.

[29]  D. Baulcombe,et al.  RNA silencing , 2002, Current Biology.

[30]  H. Vaucheret,et al.  HC-Pro Suppression of Transgene Silencing Eliminates the Small RNAs but Not Transgene Methylation or the Mobile Signal , 2001, Plant Cell.

[31]  N. Sakon,et al.  Expression of recombinant Norwalk‐like virus capsid proteins using a bacterial system and the development of its immunologic detection , 2000, Journal of medical virology.

[32]  D. Prasher,et al.  Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Jan-Peter Nap,et al.  pBINPLUS: An improved plant transformation vector based on pBIN19 , 1995, Transgenic Research.

[34]  D. Graham,et al.  Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein , 1992, Journal of virology.

[35]  A. Hamilton,et al.  Two classes of short interfering RNA in RNA silencing , 2015, The EMBO journal.

[36]  I. Brierley,et al.  Detection of the ORF3 polypeptide of feline calicivirus in infected cells and evidence for its expression from a single, functionally bicistronic, subgenomic mRNA. , 1996, The Journal of general virology.

[37]  D. Lesemann,et al.  Immunosorbent Electron Microscopy in Plant Virus Studies , 1984 .