Dimension Reduction in Statistical Estimation of Partially Observed Multiscale Processes

We consider partially observed multiscale diffusion models that are specified up to an unknown vector parameter. We establish for a very general class of test functions that the filter of the original model converges to a filter of reduced dimension. Then, this result is used to justify statistical estimation for the unknown parameters of interest based on the model of reduced dimension but using the original available data. This allows to learn the unknown parameters of interest while working in lower dimensions, as opposed to working with the original high dimensional system. Simulation studies support and illustrate the theoretical results.

[1]  N. Namachchivaya,et al.  Dimensional reduction in nonlinear filtering , 2010 .

[2]  B. Rozovskii A Simple Proof of Uniqueness for Kushner and Zakai Equations , 1991 .

[3]  H. Kushner Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems , 1990 .

[4]  A. Veretennikov,et al.  © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .

[5]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[8]  Robert J. Elliott,et al.  New finite-dimensional filters and smoothers for noisily observed Markov chains , 1993, IEEE Trans. Inf. Theory.

[9]  P. Imkeller,et al.  Dimensional reduction in nonlinear filtering: A homogenization approach , 2011, 1112.2986.

[10]  Anastasia Papavasiliou,et al.  PARTICLE FILTERS FOR MULTISCALE DIFFUSIONS , 2007, 0710.5098.

[11]  Konstantinos Spiliopoulos,et al.  Filtering the Maximum Likelihood for Multiscale Problems , 2013, Multiscale Model. Simul..

[12]  Richard B. Sowers,et al.  Efficient nonlinear filtering of a singularly perturbed stochastic hybrid system , 2011 .

[13]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[14]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[15]  G. Papanicolaou,et al.  Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives , 2011 .

[16]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Panagiotis Stinis,et al.  Variance Reduction for Particle Filters of Systems With Time Scale Separation , 2007, IEEE Transactions on Signal Processing.

[18]  N. Sri Namachchivaya,et al.  A PROBLEM IN STOCHASTIC AVERAGING OF NONLINEAR FILTERS , 2008 .