Cipher constrained encoding for constraint optimization in extended nucleic acid memory

[1]  Jamuna Kanta Sing,et al.  Extended nucleic acid memory as the future of data storage technology , 2020, International Journal of Nano and Biomaterials.

[2]  Z. Yakhini,et al.  Data storage in DNA with fewer synthesis cycles using composite DNA letters , 2019, Nature Biotechnology.

[3]  Luis Ceze,et al.  DNA assembly for nanopore data storage readout , 2019, Nature Communications.

[4]  Naveen Goela,et al.  Terminator-free template-independent enzymatic DNA synthesis for digital information storage , 2019, Nature Communications.

[5]  L. Ceze,et al.  Molecular digital data storage using DNA , 2019, Nature Reviews Genetics.

[6]  Wook Park,et al.  High information capacity DNA-based data storage with augmented encoding characters using degenerate bases , 2019, Scientific Reports.

[7]  Chau Yuen,et al.  Codes With Run-Length and GC-Content Constraints for DNA-Based Data Storage , 2018, IEEE Communications Letters.

[8]  Ratih Puspasari,et al.  Improve Security Algorithm Cryptography Vigenere Cipher Using Chaos Functions , 2018, 2018 6th International Conference on Cyber and IT Service Management (CITSM).

[9]  Douglas M. Carmean,et al.  Random access in large-scale DNA data storage , 2018, Nature Biotechnology.

[10]  N. Minakawa,et al.  Unnatural Base Pairs for Synthetic Biology. , 2018, Chemical & pharmaceutical bulletin.

[11]  Aaron W Feldman,et al.  A Semi-Synthetic Organism that Stores and Retrieves Increased Genetic Information , 2017, Nature.

[12]  Yaniv Erlich,et al.  DNA Fountain enables a robust and efficient storage architecture , 2016, Science.

[13]  Olgica Milenkovic,et al.  Portable and Error-Free DNA-Based Data Storage , 2016, Scientific Reports.

[14]  Reza M Zadegan,et al.  Nucleic acid memory. , 2016, Nature materials.

[15]  Luis Ceze,et al.  A DNA-Based Archival Storage System , 2016, ASPLOS.

[16]  Jian Ma,et al.  A Rewritable, Random-Access DNA-Based Storage System , 2015, Scientific Reports.

[17]  A. Datta,et al.  What sustains the unnatural base pairs (UBPs) with no hydrogen bonds. , 2015, The journal of physical chemistry. B.

[18]  Robert N Grass,et al.  Robust chemical preservation of digital information on DNA in silica with error-correcting codes. , 2015, Angewandte Chemie.

[19]  Thomas Lavergne,et al.  A Semi-Synthetic Organism with an Expanded Genetic Alphabet , 2014, Nature.

[20]  Ewan Birney,et al.  Towards practical, high-capacity, low-maintenance information storage in synthesized DNA , 2013, Nature.

[21]  G. Church,et al.  Next-Generation Digital Information Storage in DNA , 2012, Science.

[22]  I. Hirao,et al.  Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma , 2012, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[23]  Irene Lee,et al.  Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. , 2010, Biochimica et biophysica acta.

[24]  S. Yokoyama,et al.  An efficient unnatural base pair for PCR amplification. , 2007, Journal of the American Chemical Society.

[25]  S. Yokoyama,et al.  An unnatural base pair system for in vitro replication and transcription. , 2006, Nucleic Acids Symposium Series.

[26]  Stephen H Hughes,et al.  PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1. , 2004, Nucleic acids research.

[27]  Alaa Kadhim Farhan,et al.  A NEW APPROACH TO GENERATE MULTI S-BOXES BASED ON RNA COMPUTING , 2020 .

[28]  Xiao-Ming Chen,et al.  Forward Error Correction for DNA Data Storage , 2016, ICCS.

[29]  Ranju S Kartha,et al.  Survey: Recent Modifications in Vigenere Cipher , 2014 .

[30]  Quist-Aphetsi Kester,et al.  A cryptosystem based on Vigenère cipher with varying key , 2012 .

[31]  E. Kool Replication of non‐hydrogen bonded bases by DNA polymerases: A mechanism for steric matching , 1998, Biopolymers.