Laser skin friction measurements and CFD comparison of weak-to-strong swept shock/boundary-layer interactions

A joint experimental and computational study of skin friction in weak-to-strong swept shock wave/turbulent boundary-layer interactions has been carried out. A planar shock wave is generated by a sharp fin at angles of attack alpha = 10 deg and 16 deg at M(infinity) = 3 and 16 and 20 deg at M(infinity) = 4. Measurements are made using the Laser Interferometer Skin Friction meter, which optically detects the rate of thinning of an oil film applied to the test surface. The results show a systematic rise in the peak c(f) at the rear part of the interaction, where the separated flow atttaches. For the stronget case studied, this peak is an order of magnitude higher than the incoming freestream c(f)level.