EXPLORING TRANSITIONS OF SPACE PLASMAS OUT OF EQUILIBRIUM

Space plasmas from the solar wind to planetary magnetospheres and the outer heliosphere are systems in stationary states out of equilibrium. Empirical kappa distributions, which naturally emerge from Tsallis Statistics, successfully describe these space plasmas. The Tsallis formalism offers a solid statistical foundation and provides a set of proven tools for understanding these distributions, including a consistent definition of temperature-the physical temperature, which characterizes the non-equilibrium stationary states. Here, we develop a measure of the 'thermodynamic distance' of stationary states away from equilibrium. The stationary states are labeled by the value of the entropic q-index, lying in a spectrum from q = 1 (equilibrium) to the maximum value of q, which specifies the furthest possible stationary state from equilibrium. We call this the 'q-frozen state', because as a system approaches this state, it behaves analogously to when its temperature approaches absolute zero. We also introduce a novel isothermal procedure that describes a system's transition into different stationary states by varying the q-index, and show how the variation of temperature can be realized using an 'iso-metastability' procedure, in which the system remains in a fixed stationary state. These innovations allow a generalization of the zeroth law of thermodynamics to cover stationarymore » states out of equilibrium. By expressing the entropy in terms of the q-index, we show the detailed paths by which the transition of stationary states evolves toward equilibrium following the dynamics of a characteristic difference equation along the q-indices. This naturally exhibits certain stationary states out of equilibrium that are frequently observed in space plasmas.« less

[1]  Marc Audard,et al.  Flare Heating in Stellar Coronae , 2002 .

[2]  C. Tsallis Nonextensive statistics: theoretical, experimental and computational evidences and connections , 1999, cond-mat/9903356.

[3]  S. Christon A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .

[4]  C. M. Hammond,et al.  Solar wind double ion beams and the heliospheric current sheet , 1995 .

[5]  N. Gopalswamy,et al.  Different Power-Law Indices in the Frequency Distributions of Flares with and without Coronal Mass Ejections , 2006, astro-ph/0609197.

[6]  Sumiyoshi Abe,et al.  Correlation induced by Tsallis’ nonextensivity , 1999 .

[7]  N. Pogorelov,et al.  Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models , 2009, Science.

[8]  D. Zilbersher,et al.  Pickup ion dynamics at the structured quasi-perpendicular shock , 1997 .

[9]  M. Raadu,et al.  Test charge response for a dusty plasma with both grain size distribution and dynamical charging , 2007 .

[10]  Sumiyoshi Abe,et al.  Nonextensive thermodynamic relations , 2000 .

[11]  S. M. Krimigis,et al.  Spectral Properties of Heavy Ions Associated with the Passage of Interplanetary Shocks at 1 AU , 2004 .

[12]  W. Ip,et al.  Hydromagnetic wave excitation by ionized interstellar hydrogen and helium in the solar wind , 1987 .

[13]  R. Sagdeev,et al.  Mass loading and MHD turbulence in the solar wind/comet interaction region , 1986 .

[14]  C. Kouveliotou,et al.  Statistical Properties of SGR 1900+14 Bursts , 1999, The Astrophysical journal.

[15]  Hiroo Kanamori,et al.  Quantification of Earthquakes , 1978, Nature.

[16]  J. Dwyer,et al.  COMPOSITION AND SPECTRAL PROPERTIES OF THE 1 AU QUIET-TIME SUPRATHERMAL ION POPULATION DURING SOLAR CYCLE 23 , 2008 .

[17]  S. Elaydi An introduction to difference equations , 1995 .

[18]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[19]  On the definition of physical temperature and pressure for nonextensive thermostatistics , 2001, cond-mat/0106060.

[20]  Harry P. Warren,et al.  Time Variability of the “Quiet” Sun Observed with TRACE. II. Physical Parameters, Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares , 2000 .

[21]  A nanoflare model of quiet Sun EUV emission , 2006, astro-ph/0612585.

[22]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[23]  M. Leubner Core-Halo Distribution Functions: A Natural Equilibrium State in Generalized Thermostatistics , 2004 .

[24]  A. Noutsos,et al.  A low level of extragalactic background light as revealed by γ-rays from blazars , 2006, Nature.

[25]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[26]  P. Jupp,et al.  Statistical Analysis of the Energy Distribution of Nanoflares in the Quiet Sun , 2000 .

[27]  Paul Charbonneau,et al.  Avalanche models for solar flares (Invited Review) , 2001 .

[28]  A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.

[29]  G. Gloeckler,et al.  Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .

[30]  A Maxwellian path to the q-nonextensive velocity distribution function , 1998, cond-mat/0201503.

[31]  D. C. Hamilton,et al.  Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.

[32]  George Livadiotis,et al.  Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas , 2009 .

[33]  M. Maksimović,et al.  A Transonic Collisionless Model of the Solar Wind , 2004, astro-ph/0402358.

[34]  C. Tsallis,et al.  Nonextensive foundation of Lévy distributions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  On the generalized entropy pseudoadditivity for complex systems , 2001, cond-mat/0111541.

[36]  L. Burlaga,et al.  Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere , 2005 .

[37]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[38]  Paul Charbonneau,et al.  Geometric Effects in Avalanche Models of Solar Flares: Implications for Coronal Heating , 2001 .

[39]  C. Ryu,et al.  Self‐consistent formation of electron κ distribution: 1. Theory , 2006 .

[40]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[41]  I. Kourakis,et al.  Comment on 'Mathematical and physical aspects of Kappa velocity distribution' [Phys. Plasmas 14, 110702 (2007)] , 2009 .

[42]  Kappa-like distribution functions inside magnetic clouds , 2008 .

[43]  T. Weekes,et al.  A Very High Energy Gamma-Ray Spectrum of 1ES 2344+514 , 2005, astro-ph/0508499.

[44]  S. Krimigis,et al.  Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements , 2009 .

[45]  Scott W. McIntosh,et al.  Waiting-Time Distributions in Lattice Models of Solar Flares , 2001 .

[46]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[47]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[48]  George Gloeckler,et al.  The Common Spectrum for Accelerated Ions in the Quiet-Time Solar Wind , 2006 .

[49]  The Spectral Index Distribution of EGRET Blazars: Prospects for GLAST , 2007 .

[50]  M. Leubner Fundamental issues on kappa-distributions in space plasmas , 2003 .

[51]  P. Charbonneau,et al.  Geometrical properties of avalanches in self-organized critical models of solar flares. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  T. Nieves‐Chinchilla,et al.  Solar wind electron distribution functions inside magnetic clouds , 2008 .

[53]  F. Toffoletto,et al.  Modeling the inner plasma sheet protons and magnetic field under enhanced convection , 2003 .

[54]  O. W. Lennartsson,et al.  Width and Variation of the ENA Flux Ribbon Observed by the Interstellar Boundary Explorer , 2009, Science.

[55]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[56]  D. Jou,et al.  Temperature in non-equilibrium states: a review of open problems and current proposals , 2003 .

[57]  T. Yamano Some properties of q-logarithm and q-exponential functions in Tsallis statistics , 2002 .

[58]  N. Pogorelov,et al.  The Effects of a κ-Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU , 2008, 0803.2538.

[59]  Sandip K. Chakrabarti,et al.  Spectral Properties of Accretion Disks Around Galactic and Extragalactic Black Holes , 1995 .

[60]  L. Zelenyi,et al.  Functional background of the Tsallis entropy: "coarse-grained" systems and "kappa" distribution functions , 2000 .

[61]  Andrew J. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. II. Radial variations , 2004 .

[62]  Barry H. Mauk,et al.  The hot plasma and radiation environment of the Uranian magnetosphere , 1987 .

[63]  E. Marsch Kinetic Physics of the Solar Corona and Solar Wind , 2006 .

[64]  B. Shizgal Suprathermal particle distributions in space physics: Kappa distributions and entropy , 2007 .

[65]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[66]  Nathan A. Schwadron,et al.  The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind , 2000 .

[67]  M. Bazarghan,et al.  A nanoflare model for active region radiance: application of artificial neural networks , 2008, 0808.3925.

[68]  R. Giacconi,et al.  Further Observations of the Pulsating X-Ray Source Cygnus X-1 from UHURU , 1971 .

[69]  E. Roelof,et al.  On electron acceleration at CIR related shock waves , 2002 .

[70]  Charles C. Goodrich,et al.  Simulation of the heliosphere: Generalized charge‐exchange cross sections , 1999 .

[71]  Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier β , 2000, cond-mat/0006279.

[72]  S. Nozawa,et al.  Effects of a kappa distribution function of electrons on incoherent scatter spectra , 2000 .

[73]  Keith A. Arnaud,et al.  EXOSAT observations of a strong soft X-ray excess in MKN 841. , 1985 .

[74]  T. Weekes,et al.  Measurement of the Multi-TeV Gamma-Ray Flare Spectra of Markarian 421 and Markarian 501 , 1998, astro-ph/9808333.

[75]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[76]  N. Pogorelov,et al.  Implications of solar wind suprathermal tails for IBEX ENA images of the heliosheath , 2008 .

[77]  Kazuhiro Kimura,et al.  X-ray variability of GX 339 - 4 in its very high state , 1991 .

[78]  Brenda L. Dingus,et al.  High-energy gamma-ray emission from active galaxies: EGRET observations and their implications , 1995 .

[79]  A. Plastino,et al.  The role of constraints in Tsallis' nonextensive treatment revisited , 2005 .