Monogenic Polynomials of Four Variables with Binomial Expansion

In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.

[1]  3D‐mappings by means of monogenic functions and their approximation , 2010 .

[2]  Polynomials satisfying a binomial theorem , 1970 .

[3]  H. Malonek,et al.  Monogenic pseudo‐complex power functions and their applications , 2014 .

[4]  P. Appell,et al.  Sur une classe de polynômes , 1880 .

[5]  R. Delanghe On regular-analytic functions with values in a Clifford algebra , 1970 .

[6]  M. I. Falcão,et al.  Laguerre derivative and monogenic Laguerre polynomials: An operational approach , 2011, Math. Comput. Model..

[7]  M. I. Falcão,et al.  REMARKS ON THE GENERATION OF MONOGENIC FUNCTIONS , 2006 .

[8]  Helmuth R. Malonek,et al.  A hypercomplex derivative of monogenic functsions in and its Applications , 1999 .

[9]  R. Fueter Analytische Funktionen einer Quaternionenvariablen , 1932 .

[10]  R. Fueter Über funktionen einer quaternionenvariablen , 1929 .

[11]  David Taniar,et al.  Computational Science and Its Applications – ICCSA 2013 , 2013, Lecture Notes in Computer Science.

[12]  H. R. Malonek,et al.  A note on a generalized Joukowski transformation , 2010, Appl. Math. Lett..

[13]  M. I. Falcão,et al.  On pseudo-complex bases for monogenic polynomials , 2012 .

[14]  D. Constales,et al.  Basic sets of pofynomials in clifford analysis , 1990 .

[15]  M. I. Falcão,et al.  Matrix Representations of a Special Polynomial Sequence in Arbitrary Dimension , 2012 .

[16]  V. Souček,et al.  The Gelfand–Tsetlin bases for Hodge–de Rham systems in Euclidean spaces , 2010, 1012.4998.

[17]  M. I. Falcão,et al.  Special Monogenic Polynomials—Properties and Applications , 2007 .

[18]  K. Gürlebeck,et al.  Holomorphic Functions in the Plane and n-dimensional Space , 2007 .

[19]  E. Stein,et al.  Generalization of the Cauchy-Riemann Equations and Representations of the Rotation Group , 1968 .

[20]  R. Lávička Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3 , 2010, 1003.5587.

[21]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions , 1992 .

[22]  H. Malonek Rudolf Fueter and his motivation for hypercomplex function theory , 2001 .

[23]  K. Gürlebeck,et al.  On a generalized Appell system and monogenic power series , 2009 .

[24]  H. Malonek A new hypercomplex structure of the euclidean space R m+1 and the concept of hypercomplex differentiability , 1990 .

[25]  Swee-Ping Chia,et al.  AIP Conference Proceedings , 2008 .

[26]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions: A Function Theory For The Dirac Operator , 2012 .

[27]  H. Malonek,et al.  On Complete Sets of Hypercomplex Appell Polynomials , 2008 .

[28]  Klaus Gürlebeck,et al.  Quaternionic and Clifford Calculus for Physicists and Engineers , 1998 .

[29]  M. I. Falcão,et al.  Generalized Exponentials through Appell sets in Rn+1 and Bessel functions , 2007 .