Applications of the Obstruction Principle and WQOs

We introduce methods to apply the Graph Minor Theorem and demonstrate theoretical tractability.

[1]  Jan van Leeuwen,et al.  On Interval Routing Schemes and Treewidth , 1995, WG.

[2]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[3]  Ken-ichi Kawarabayashi,et al.  Algorithms for finding an induced cycle in planar graphs , 2010, Comb..

[4]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[5]  Michael A. Langston,et al.  Fixed-Parameter Tractability, A Prehistory, , 2012, The Multivariate Algorithmic Revolution and Beyond.

[6]  Michael R. Fellows,et al.  Constructive complexity , 1991, Discret. Appl. Math..

[7]  Michael R. Fellows,et al.  On search, decision, and the efficiency of polynomial-time algorithms , 1994, FOCS 1994.

[8]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[9]  B. D. Fluiter Algorithms for graphs of small treewidth , 1997 .

[10]  Greg N. Frederickson,et al.  Designing networks with compact routing tables , 1988, Algorithmica.

[11]  Petr A. Golovach,et al.  Induced Packing of Odd Cycles in a Planar Graph , 2009, ISAAC.

[12]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[13]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[14]  Hans L. Bodlaender,et al.  Reduction Algorithms for Constructing Solutions in Graphs with Small Treewidth , 1996, COCOON.

[15]  Michael R. Fellows,et al.  Finite-State Computability of Annotations of Strings and Trees , 1996, CPM.

[16]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[17]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[18]  Esther M. Arkin Complexity of cycle and path problems in graphs , 1986 .

[19]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[20]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[21]  Bruce A. Reed,et al.  Odd cycle packing , 2010, STOC '10.

[22]  A.D. Lopez,et al.  A Dense Gate Matrix Layout Method for MOS VLSI , 1980, IEEE Journal of Solid-State Circuits.

[23]  Michael R. Fellows,et al.  Obstructions to Within a Few Vertices or Edges of Acyclic , 1995, WADS.

[24]  Paul D. Seymour,et al.  Graph minors. XXI. Graphs with unique linkages , 2009, J. Comb. Theory, Ser. B.

[25]  Paul Wollan,et al.  A shorter proof of the graph minor algorithm: the unique linkage theorem , 2010, STOC '10.

[26]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[27]  Michael R. Fellows,et al.  On the complexity and combinatorics of covering finite complexes , 1991, Australas. J Comb..

[28]  Fillia Makedon,et al.  Minimizing Width in Linear Layouts , 1983, ICALP.

[29]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[30]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[31]  Paul D. Seymour,et al.  Graph Minors. XXII. Irrelevant vertices in linkage problems , 2012, J. Comb. Theory, Ser. B.

[32]  Ken-ichi Kawarabayashi,et al.  The Disjoint Paths Problem: Algorithm and Structure , 2011, WALCOM.

[33]  Claus-Peter Schnorr,et al.  Optimal Algorithms for Self-Reducible Problems , 1976, ICALP.

[34]  Dimitrios M. Thilikos,et al.  Tight Bounds for Linkages in Planar Graphs , 2011, ICALP.

[35]  Paul Wollan,et al.  Finding topological subgraphs is fixed-parameter tractable , 2010, STOC.

[36]  Michael R. Fellows,et al.  The complexity of induced minors and related problems , 1995, Algorithmica.

[37]  Michael J. Dinneen,et al.  A Characterization of Graphs with Vertex Cover up to Five , 1994, ORDAL.

[38]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[39]  Michael R. Fellows,et al.  On computing graph minor obstruction sets , 2000, Theor. Comput. Sci..