Littlewood–Paley theory for Morrey spaces and their preduals

[1]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[2]  Y. Sawano,et al.  The Fatou Property of Block Spaces , 2014, 1404.2688.

[3]  K. Yabuta,et al.  Remarks on a Subspace of Morrey Spaces , 2014 .

[4]  H. Triebel,et al.  Calderón–Zygmund operators in Morrey spaces , 2014 .

[5]  H. Triebel Local Function Spaces, Heat and Navier-stokes Equations , 2013 .

[6]  Y. Sawano,et al.  Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials , 2013 .

[7]  Y. Sawano,et al.  Applications of Littlewood-Paley Theory for -Morrey Spaces to the Boundedness of Integral Operators , 2013 .

[8]  R. Mustafayev,et al.  New pre-dual space of Morrey space , 2013 .

[9]  Y. Sawano,et al.  A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces , 2012, 1205.2963.

[10]  Y. Sawano,et al.  Predual Spaces of Morrey Spaces with Non-doubling Measures , 2009 .

[11]  Hitoshi Tanaka,et al.  Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces , 2007 .

[12]  Hitoshi Tanaka,et al.  Morrey Spaces for Non–doubling Measures , 2005 .

[13]  Jingshi Xu,et al.  Some properties of Morrey type Besov–Triebel spaces , 2005 .

[14]  A. Mazzucato Decomposition of Besov-Morrey Spaces , 2005 .

[15]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[16]  D. Adams,et al.  Nonlinear potential analysis on Morrey spaces and their capacities , 2004 .

[17]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[18]  YasuoKOMORI Calderón—Zygmund Operators on the Predual of a Morrey Space , 2003 .

[19]  E. Kalita DUAL MORREY SPACES , 1998 .

[20]  J. R. D. Francia Some Maximal Inequalities , 1985 .

[21]  Charles B. Morrey,et al.  On the solutions of quasi-linear elliptic partial differential equations , 1938 .

[22]  J. E. Littlewood,et al.  Theorems on Fourier Series and Power Series , 1931 .