DGCR8 HITS-CLIP reveals novel functions for the Microprocessor

The Drosha–DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as the endonuclease. Using high-throughput sequencing and cross-linking immunoprecipitation (HITS-CLIP) we identified RNA targets of DGCR8 in human cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs also comprised several hundred mRNAs as well as small nucleolar RNAs (snoRNAs) and long noncoding RNAs. We found that the Microprocessor controlled the abundance of several mRNAs as well as of MALAT1. By contrast, DGCR8-mediated cleavage of snoRNAs was independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Binding of DGCR8 to cassette exons is a new mechanism for regulation of the relative abundance of alternatively spliced isoforms. These data provide insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs.

[1]  Shihao Shen,et al.  MADS+: discovery of differential splicing events from Affymetrix exon junction array data , 2009, Bioinform..

[2]  Gautier Koscielny,et al.  Ensembl’s 10th year , 2009, Nucleic Acids Res..

[3]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[4]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[5]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[6]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[7]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[8]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[9]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[10]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[11]  Sonja Althammer,et al.  Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data , 2011, Bioinform..

[12]  Gregory J. Hannon,et al.  Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. , 2010, Molecular cell.

[13]  Thomas A Neubert,et al.  Canonical and alternate functions of the microRNA biogenesis machinery. , 2010, Genes & development.

[14]  I. Hofacker RNA Secondary Structure Analysis Using the Vienna RNA Package , 2003, Current protocols in bioinformatics.

[15]  L. Miraglia,et al.  Human RNase III Is a 160-kDa Protein Involved in Preribosomal RNA Processing* , 2000, The Journal of Biological Chemistry.

[16]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[17]  J. Steitz,et al.  Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production , 2008, The Journal of cell biology.

[18]  Matthew Mort,et al.  Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. , 2009, Genome research.

[19]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[20]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[21]  Paul Pavlidis,et al.  Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model , 2008, Nature Genetics.

[22]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[23]  J. Cáceres,et al.  Antagonistic role of hnRNP A1 and KSRP in the regulation of Let-7a biogenesis , 2010, Nature Structural &Molecular Biology.

[24]  J. Ule,et al.  CLIP: construction of cDNA libraries for high-throughput sequencing from RNAs cross-linked to proteins in vivo. , 2009, Methods.

[25]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[26]  B. Cullen,et al.  Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha , 2005, The EMBO journal.

[27]  C. S. Sullivan,et al.  Expanding the role of Drosha to the regulation of viral gene expression , 2011, Proceedings of the National Academy of Sciences.

[28]  T. Kiss SnoRNP biogenesis meets Pre-mRNA splicing. , 2006, Molecular cell.

[29]  A. Krainer,et al.  Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity , 1997, The Journal of cell biology.

[30]  Joel E. Richardson,et al.  fjoin: Simple and Efficient Computation of Feature Overlaps , 2006, J. Comput. Biol..

[31]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[32]  R. Blelloch,et al.  Genomic Analysis Suggests that mRNA Destabilization by the Microprocessor Is Specialized for the Auto-Regulation of Dgcr8 , 2009, PloS one.

[33]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[34]  Z. Zhou,et al.  DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. , 2010, RNA.

[35]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[36]  T. Liang,et al.  The emerging role of microRNAs in immune cell development and differentiation , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[37]  Jernej Ule,et al.  CLIP: a method for identifying protein-RNA interaction sites in living cells. , 2005, Methods.

[38]  Donny D. Licatalosi,et al.  RNA processing and its regulation: global insights into biological networks , 2010, Nature Reviews Genetics.

[39]  Sheng Yin,et al.  Heme is involved in microRNA processing , 2007, Nature Structural &Molecular Biology.

[40]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[41]  S. Guil,et al.  The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a , 2007, Nature Structural &Molecular Biology.

[42]  S. Minoshima,et al.  Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. , 2007, Experimental cell research.

[43]  Geoffrey J. Barton,et al.  Human miRNA Precursors with Box H/ACA snoRNA Features , 2009, PLoS Comput. Biol..

[44]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[45]  Bin Xu,et al.  Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex , 2011, Proceedings of the National Academy of Sciences.

[46]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[47]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[48]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[49]  J. Ule,et al.  iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution , 2010, Nature Structural &Molecular Biology.

[50]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[51]  D. Tollervey,et al.  Function and synthesis of small nucleolar RNAs. , 1997, Current opinion in cell biology.

[52]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[53]  R. Gregory,et al.  Post-transcriptional control of DGCR8 expression by the Microprocessor. , 2009, RNA.

[54]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[55]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[56]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[57]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[58]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[59]  Rudolf Jaenisch,et al.  DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal , 2007, Nature Genetics.

[60]  S. Minoshima,et al.  Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. , 2003, Biochemical and biophysical research communications.

[61]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[62]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[63]  Sebastian Kadener,et al.  Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. , 2009, RNA.

[64]  A. Hata,et al.  Regulation of MicroRNA Biogenesis: A miRiad of mechanisms , 2009, Cell Communication and Signaling.