Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum

We present a study of how photovoltaic (PV) module performance varies on continental scale. Mathematical models have been used to take into account shallow-angle reflectivity, spectral sensitivity, dependence of module efficiency on irradiance and module temperature as well as how the module temperature depends on irradiance, ambient temperature and wind speed. Spectrally resolved irradiance data retrieved from satellite images are combined with temperature and wind speed data from global computational weather forecast data to produce maps of PV performance for Eurasia and Africa. Results show that module reflectivity causes a fairly small drop of 2\%–4\% in PV performance. Spectral effects may modify the performance by up to \(\pm 6\)\%, depending on location and module type. The strongest effect is seen in the dependence on irradiance and module temperature, which may range from \(-\)20\% to +5\% at different locations.

[1]  Thomas Reindl,et al.  Effect of Solar Spectrum on the Performance of Various Thin-Film PV Module Technologies in Tropical Singapore , 2014, IEEE Journal of Photovoltaics.

[2]  David Faiman,et al.  Assessing the outdoor operating temperature of photovoltaic modules , 2008 .

[3]  William E. Boyson,et al.  Photovoltaic array performance model. , 2004 .

[4]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[5]  R. Müller,et al.  A new solar radiation database for estimating PV performance in Europe and Africa , 2012 .

[6]  E. Dunlop,et al.  Geographical variation of the conversion efficiency of crystalline silicon photovoltaic modules in Europe , 2008 .

[7]  Joshua M. Pearce,et al.  Estimating Potential Photovoltaic Yield with r.sun and the Open Source Geographical Resources Analysis Support System , 2010 .

[8]  F. Chenlo,et al.  Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites , 2014 .

[9]  Tariq Muneer,et al.  Solar radiation model for Europe , 1990 .

[10]  Cristina Cornaro,et al.  Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules , 2012 .

[11]  R. Hollmann,et al.  The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach. , 2009 .

[12]  D. Elizondo,et al.  Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules , 2013 .

[13]  Thomas Huld,et al.  Spatial Downscaling of 2-Meter Air Temperature Using Operational Forecast Data , 2015 .

[14]  Thomas A. Huld,et al.  A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation , 2014, Remote. Sens..

[15]  Luis Ramirez Camargo,et al.  Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale , 2015, Comput. Environ. Urban Syst..

[16]  H. Beyer,et al.  Mapping the performance of PV modules, effects of module type and data averaging , 2010 .

[17]  M. J. Kearney,et al.  Experimental study of variations of the solar spectrum of relevance to thin film solar cells , 2003 .

[18]  C. Furlanello,et al.  SOLAR RADIATION ESTIMATION ON BUILDING ROOFS AND WEB-BASED SOLAR CADASTRE , 2012 .

[19]  Annette Hammer,et al.  A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands , 2012, Remote. Sens..

[20]  Ewan D. Dunlop,et al.  Seasonal variations on energy yield of a‐Si, hybrid, and crystalline Si PV modules , 2010 .

[21]  Richard Müller,et al.  Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies , 2015 .

[22]  M. Heck,et al.  Modeling of the nominal operating cell temperature based on outdoor weathering , 2011 .

[23]  K. Bücher Site dependence of the energy collection of PV modules , 1997 .

[24]  F. Fabero,et al.  Results of the 3rd Modelling Round Robin within the European Project „PERFORMANCE”– Comparison of Module Energy Rating Methods , 2010 .

[25]  Takashi Minemoto,et al.  Impact of spectral irradiance distribution and temperature on the outdoor performance of amorphous Si photovoltaic modules , 2007 .

[26]  Christian Reise,et al.  On the impact of solar spectral irradiance on the yield of different PV technologies , 2015 .

[27]  E. Dunlop,et al.  A power-rating model for crystalline silicon PV modules , 2011 .

[28]  N. Martín,et al.  Calculation of the PV modules angular losses under field conditions by means of an analytical model , 2002 .

[29]  E. Dunlop,et al.  Comparison of potential solar electricity output from fixed‐inclined and two‐axis tracking photovoltaic modules in Europe , 2008 .

[30]  Thomas R. Betts,et al.  A critical appraisal of the factors affecting energy production from amorphous silicon photovoltaic arrays in a maritime climate , 2004 .