Qualitative Spatial Logics for Buffered Geometries

This paper describes a series of new qualitative spatial logics for checking consistency of sameAs and partOf matches between spatial objects from different geospatial datasets, especially from crowd-sourced datasets. Since geometries in crowd-sourced data are usually not very accurate or precise, we buffer geometries by a margin of error or a level of tolerance σ ∈ R≥0, and define spatial relations for buffered geometries. The spatial logics formalize the notions of 'buffered equal' (intuitively corresponding to 'possibly sameAs'), 'buffered part of' ('possibly partOf'), 'near' ('possibly connected') and 'far' ('definitely disconnected'). A sound and complete axiomatisation of each logic is provided with respect to models based on metric spaces. For each of the logics, the satisfiability problem is shown to be NP-complete. Finally, we briefl y describe how the logics are used in a system for generating and debugging matches between spatial objects, and report positive experimental evaluation results for the system.

[1]  Spiros Skiadopoulos,et al.  Composing cardinal direction relations , 2001, Artif. Intell..

[2]  Matthias Kopczynski EFFICIENT SPATIAL QUERIES WITH SKETCHES , 2006 .

[3]  Reinhard Moratz,et al.  Spatial reasoning with augmented points: Extending cardinal directions with local distances , 2012, J. Spatial Inf. Sci..

[4]  Anthony G. Cohn,et al.  A Logical Approach to Incorporating Qualitative Spatial Reasoning into GIS (Extended Abstract) , 1997, COSIT.

[5]  Anthony G. Cohn,et al.  The EGG/YOLK reliability hierarchy: semantic data integration using sorts with prototypes , 1994, CIKM '94.

[6]  M. Haklay How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets , 2010 .

[7]  MAX J. EGENHOFER,et al.  Point Set Topological Relations , 1991, Int. J. Geogr. Inf. Sci..

[8]  Sheng-sheng Wang,et al.  Qualitative constraint satisfaction problems: An extended framework with landmarks , 2013, Artif. Intell..

[9]  Gérard Ligozat,et al.  Reasoning about Cardinal Directions , 1998, J. Vis. Lang. Comput..

[10]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[11]  K. Fine Vagueness, truth and logic , 1975, Synthese.

[12]  Glen Hart,et al.  A tool for matching crowd-sourced and authoritative geospatial data , 2015, 2015 International Conference on Military Communications and Information Systems (ICMCIS).

[13]  Martine De Cock,et al.  Spatial reasoning in a fuzzy region connection calculus , 2009, Artif. Intell..

[14]  Kai Zimmermann,et al.  Measuring without Measures: The Delta-Calculus , 1995, COSIT.

[15]  Sanjiang Li,et al.  On redundant topological constraints , 2014, Artif. Intell..

[16]  Max J. Egenhofer,et al.  Similarity of Cardinal Directions , 2001, SSTD.

[17]  Frank Wolter,et al.  Axiomatizing Distance Logics , 2002, J. Appl. Non Class. Logics.

[18]  Peter van Beek,et al.  Reasoning About Qualitative Temporal Information , 1990, Artif. Intell..

[19]  Zdzislaw Pawlak,et al.  Rough Set Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[20]  Heshan Du,et al.  Matching disparate geospatial datasets and validating matches using spatial logic , 2015 .

[21]  Chris Cornelis,et al.  Fuzzy region connection calculus: An interpretation based on closeness , 2008, Int. J. Approx. Reason..

[22]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[23]  David Mallenby,et al.  Grounding a Geographic Ontology on Geographic Data , 2007, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[24]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[25]  Kai-Florian Richter,et al.  Qualitative matching of spatial information , 2010, GIS '10.

[26]  Natasha Alechina,et al.  A Logic of Part and Whole for Buffered Geometries , 2014, STAIRS.

[27]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[28]  Brian Logan,et al.  Using Qualitative Spatial Logic for Validating Crowd-Sourced Geospatial Data , 2015, AAAI.

[29]  Reinhard Moratz,et al.  Qualitative Spatial Reasoning about Line Segments , 2000, ECAI.

[30]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning: Cardinal Directions as an Example , 1996, Int. J. Geogr. Inf. Sci..

[31]  Anthony G. Cohn,et al.  Representing Spatial Vagueness: A Mereological Approach , 1996, KR.

[32]  Hans W. Guesgen,et al.  Imprecise reasoning in geographic information systems , 2000, Fuzzy Sets Syst..

[33]  Frank Wolter,et al.  A logic for metric and topology , 2005, Journal of Symbolic Logic.

[34]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[35]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning with Cardinal Directions , 1991, ÖGAI.

[36]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[37]  Max J. Egenhofer,et al.  Query Processing in Spatial-Query-by-Sketch , 1997, J. Vis. Lang. Comput..

[38]  Frank Wolter,et al.  Reasoning about distances , 2003, IJCAI.

[39]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[40]  Luis Fariñas del Cerro,et al.  A New Tractable Subclass of the Rectangle Algebra , 1999, IJCAI.

[41]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[42]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[43]  Carsten Lutz,et al.  A Tableau Algorithm for Description Logics with Concrete Domains and General TBoxes , 2007, Journal of Automated Reasoning.

[44]  B. Bennett The Application of Qualitative Spatial Reasoning to Gis (extended Abstract) , 1996 .

[45]  Brandon Bennett,et al.  Applying Spatial Reasoning to Topographical Data with a Grounded Geographical Ontology , 2007, GeoS.

[46]  John G. Stell,et al.  Spatial relations between indeterminate regions , 2001, Int. J. Approx. Reason..

[47]  Eliseo Clementini,et al.  Qualitative Representation of Positional Information , 1997, Artif. Intell..

[48]  Natasha Alechina,et al.  The Logic of NEAR and FAR , 2013, COSIT.

[49]  Nicholas J. J. Smith Vagueness and Degrees of Truth , 2008 .

[50]  Chris Cornelis,et al.  Fuzzy region connection calculus: Representing vague topological information , 2008, Int. J. Approx. Reason..

[51]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[52]  Juan Chen,et al.  A survey of qualitative spatial representations , 2013, Knowledge engineering review (Print).

[53]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[54]  F. J. MONKHOUSE,et al.  The Ordnance Survey , 1965, Nature.

[55]  Uniuersita di L'Aquila An Algebraic Model for Spatial Objects with Indeterminate Boundaries , 2012 .

[56]  Evren Sirin,et al.  PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine , 2009, OWLED.

[57]  Eliseo Clementini,et al.  Approximate topological relations , 1997, Int. J. Approx. Reason..

[58]  Oliver Kutz,et al.  Notes on Logics of Metric Spaces , 2007, Stud Logica.

[59]  Frank Wolter,et al.  Logics of metric spaces , 2003, TOCL.

[60]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .