Copper is a Cofactor of the Formylglycine‐Generating Enzyme

Formylglycine‐generating enzyme (FGE) is an O2‐utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that CuI is an integral cofactor of this enzyme and binds with high affinity (KD=of 10−17 m) to a pair of active‐site cysteines. These findings establish FGE as a novel type of copper enzyme.

[1]  A. G. Wedd,et al.  Unification of the Copper(I) Binding Affinities of the Metallo-chaperones Atx1, Atox1, and Related Proteins , 2011, The Journal of Biological Chemistry.

[2]  M. Rudolph,et al.  Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions. , 2007, Acta crystallographica. Section D, Biological crystallography.

[3]  T. Selmer,et al.  A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency , 1995, Cell.

[4]  M. Marletta,et al.  Cellulose degradation by polysaccharide monooxygenases. , 2015, Annual review of biochemistry.

[5]  C. Cramer,et al.  Effects of thioether substituents on the O2 reactivity of beta-diketiminate-Cu(I) complexes: probing the role of the methionine ligand in copper monooxygenases. , 2006, Journal of the American Chemical Society.

[6]  C. Cramer,et al.  Isotopic probing of molecular oxygen activation at copper(I) sites. , 2007, Journal of the American Chemical Society.

[7]  K. Karlin,et al.  A N3S(thioether)-ligated Cu(II)-superoxo with enhanced reactivity. , 2015, Journal of the American Chemical Society.

[8]  M. Kubo,et al.  Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DbetaM. , 2009, Journal of the American Chemical Society.

[9]  T. Dierks,et al.  Eukaryotic formylglycine‐generating enzyme catalyses a monooxygenase type of reaction , 2015, The FEBS journal.

[10]  Y. Moro-oka,et al.  A Monomeric Side-On Superoxocopper(II) Complex: Cu(O2)(HB(3-tBu-5-iPrpz)3) , 1994 .

[11]  C. Cramer,et al.  Snapshots of dioxygen activation by copper: the structure of a 1:1 Cu/O(2) adduct and its use in syntheses of asymmetric Bis(mu-oxo) complexes. , 2002, Journal of the American Chemical Society.

[12]  M. Orio,et al.  Side-on cupric-superoxo triplet complexes as competent agents for H-abstraction relevant to the active site of PHM. , 2015, Chemical communications.

[13]  Catalina Carrasco-Pozo,et al.  Cu(I)-glutathione complex: a potential source of superoxide radicals generation. , 2008, Bioorganic & medicinal chemistry.

[14]  Jamie H. D. Cate,et al.  Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. , 2011, ACS chemical biology.

[15]  Benjamin F. Gherman,et al.  Dioxygen activation at a single copper site: structure, bonding, and mechanism of formation of 1:1 Cu-O2 adducts. , 2004, Journal of the American Chemical Society.

[16]  R. Beinart,et al.  Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment , 2011, Front. Microbio..

[17]  Carolyn R Bertozzi,et al.  Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. , 2015, ACS chemical biology.

[18]  Adriana Badarau,et al.  Copper trafficking mechanism of CXXC-containing domains: insight from the pH-dependence of their Cu(I) affinities. , 2011, Journal of the American Chemical Society.

[19]  T. Dierks,et al.  Molecular Basis for Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme , 2005, Cell.

[20]  Donald Hilvert,et al.  Minimale Umgestaltung aktiver Enzymtaschen – wie man alten Enzymen neue Kunststücke beibringt , 2007 .

[21]  D. Root,et al.  Spectroscopic and electronic structure studies of the diamagnetic side-on CuII-superoxo complex Cu(O2)[HB(3-R-5-iPrpz)3]: antiferromagnetic coupling versus covalent delocalization. , 2003, Journal of the American Chemical Society.

[22]  Tim Pat Coogan The I.R.A. , 1970 .

[23]  J. Klinman The Copper-Enzyme Family of Dopamine β-Monooxygenase and Peptidylglycine α-Hydroxylating Monooxygenase: Resolving the Chemical Pathway for Substrate Hydroxylation* , 2006, Journal of Biological Chemistry.

[24]  M. Knop,et al.  In Vitro Reconstitution of Formylglycine‐Generating Enzymes Requires Copper(I) , 2015, Chembiochem : a European journal of chemical biology.

[25]  Donald Hilvert,et al.  Minimalist active-site redesign: teaching old enzymes new tricks. , 2007, Angewandte Chemie.

[26]  L. Torrance,et al.  Unusual Features of Pomoviral RNA Movement , 2011, Front. Microbio..

[27]  C. Cramer,et al.  An anionic, tetragonal copper(II) superoxide complex. , 2010, Journal of the American Chemical Society.

[28]  S. Prigge,et al.  Dioxygen Binds End-On to Mononuclear Copper in a Precatalytic Enzyme Complex , 2004, Science.

[29]  F. Hollfelder,et al.  A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. , 2008, Journal of molecular biology.

[30]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[31]  R. Huxtable Thiols, Disulfides, and Thioesters , 1986 .

[32]  A. Ballabio,et al.  The Multiple Sulfatase Deficiency Gene Encodes an Essential and Limiting Factor for the Activity of Sulfatases , 2003, Cell.

[33]  R. Raines,et al.  A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid , 2012, Journal of the American Chemical Society.

[34]  K. Karlin,et al.  Cupric superoxo-mediated intermolecular C-H activation chemistry. , 2011, Journal of the American Chemical Society.

[35]  Patrick L. Holland,et al.  β-Diketiminate ligand backbone structural effects on Cu(I)/O2 reactivity: Unique copper-superoxo and bis(μ-oxo) complexes , 2002 .

[36]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[37]  J. Berger,et al.  Function and Structure of a Prokaryotic Formylglycine-generating Enzyme*S⃞ , 2008, Journal of Biological Chemistry.

[38]  R. Mains,et al.  The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase (PHM): a spectroscopic study of the H172A mutant. , 2002, Biochemistry.

[39]  T. Dierks,et al.  Multiple Sulfatase Deficiency Is Caused by Mutations in the Gene Encoding the Human Cα-Formylglycine Generating Enzyme , 2003, Cell.

[40]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[41]  P. Drake,et al.  Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion , 2015, The Journal of Biological Chemistry.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  T. Dierks,et al.  A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. , 2006, Proceedings of the National Academy of Sciences of the United States of America.