Canonical spectral representation for exchangeable max-stable sequences

The set L $\mathfrak {L}$ of infinite-dimensional, symmetric stable tail dependence functions associated with exchangeable max-stable sequences of random variables with unit Fréchet margins is shown to be a simplex. Except for a single element, the extremal boundary of L $\mathfrak {L}$ is in one-to-one correspondence with the set F 1 $\mathfrak {F}_{1}$ of distribution functions of non-negative random variables with unit mean. Consequently, each ℓ ∈ 𝔏 $\ell \in \mathfrak {L}$ is uniquely represented by a pair ( b , µ ) of a constant b and a probability measure µ on F 1 $\mathfrak {F}_{1}$ . A canonical stochastic construction for arbitrary exchangeable max-stable sequences and a stochastic representation for the Pickands dependence measure of finite-dimensional margins of l are immediate corollaries. As by-products, a canonical analytical description and an associated canonical Le Page series representation for non-decreasing stochastic processes that are strongly infinitely divisible with respect to time are obtained.

[1]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[2]  David A. Sibley,et al.  A metric for weak convergence of distribution functions , 1971 .

[3]  B. De Finetti,et al.  Funzione caratteristica di un fenomeno aleatorio , 1929 .

[4]  H. Joe Multivariate extreme value distributions , 1997 .

[5]  H. Joe Multivariate Models and Multivariate Dependence Concepts , 1997 .

[6]  Paul Ressel Homogeneous distributions - And a spectral representation of classical mean values and stable tail dependence functions , 2013, J. Multivar. Anal..

[7]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[8]  E. Alfsen Compact convex sets and boundary integrals , 1971 .

[9]  H. Joe Multivariate models and dependence concepts , 1998 .

[10]  I. Molchanov,et al.  Series representation of time-stable stochastic processes , 2015, Probability and Mathematical Statistics.

[11]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[12]  Jan-Frederik Mai,et al.  Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time , 2014 .

[13]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[14]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[15]  Marco Oesting,et al.  Exact simulation of max-stable processes. , 2015, Biometrika.

[16]  Jan-Frederik Mai,et al.  Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications , 2020 .

[17]  J. Segers MAX-STABLE MODELS FOR MULTIVARIATE EXTREMES , 2012, 1204.0332.

[18]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[19]  Jan-Frederik Mai,et al.  Extreme-value copulas associated with the expected scaled maximum of independent random variables , 2018, J. Multivar. Anal..

[20]  Léo R. Belzile,et al.  Multivariate Extreme Value Distributions , 2015 .

[21]  Johan Segers,et al.  Extreme-value copulas , 2009, 0911.1015.

[22]  Jan-Frederik Mai,et al.  Extendibility of Marshall–Olkin distributions and inverse Pascal triangles , 2013 .

[23]  M. Scherer,et al.  Subordinators which are infinitely divisible w.r.t. time: Construction, properties, and simulation of max-stable sequences and infinitely divisible laws , 2018, Latin American Journal of Probability and Mathematical Statistics.