Rescaled contact processes converge to super-Brownian motion in two or more dimensions

[1]  Thomas M. Liggett,et al.  Improved Upper Bounds for the Contact Process Critical Value , 1995 .

[2]  Carl Mueller,et al.  A phase transition for a stochastic PDE related to the contact process , 1994 .

[3]  Steven N. Evans,et al.  Measure-Valued Branching Diffusions with Singular Interactions , 1994, Canadian Journal of Mathematics.

[4]  Rick Durrett,et al.  Estimating the critical values of stochastic growth models , 1993, Journal of Applied Probability.

[5]  Thomas M. Liggett,et al.  The Survival of One-Dimensional Contact Processes in Random Environments , 1992 .

[6]  M. Reimers One dimensional stochastic partial differential equations and the branching measure diffusion , 1989 .

[7]  Patrick J. Fitzsimmons,et al.  Construction and regularity of measure-valued markov branching processes , 1988 .

[8]  N. Konno,et al.  Stochastic partial differential equations for some measure-valued diffusions , 1988 .

[9]  T. Liggett Interacting Particle Systems , 1985 .

[10]  T. E. Harris Contact Interactions on a Lattice , 1974 .

[11]  H. Kesten A Sharper Form of the Doeblin-Lévy-Kolmogorov-Rogozin Inequality for Concentration Functions. , 1969 .

[12]  D. Kendall Stochastic Processes and Population Growth , 1949 .

[13]  Rick Durrett,et al.  Ten lectures on particle systems , 1995 .

[14]  A. Stacey Bounds on the critical probability in oriented percolation models. , 1994 .

[15]  Rick Durrett,et al.  A New Method for Proving the Existence of Phase Transitions , 1991 .

[16]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[17]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .