Investigating the Role of Nonmetallic Fillers in Particulate-Reinforced Mold Composites using EAs

In the soft tooling (ST) process, flexible polymeric materials (namely, silicone rubber, polyurethane, etc.) are used for making mold for producing wax pattern. Due to low thermal conductivity of mold materials, the ST process takes longer time for cooling. Hence, to reduce the cooling time, thermal conductive fillers are included in mold materials. But addition of fillers affects various properties of ST process (such as stiffness of the mold box) and the influences may vary according to the types of materials used. Therefore, in the present work, multiobjective optimizations of equivalent thermal conductivity and effective modulus of elasticity of composite mold materials are conducted using evolutionary algorithms in order to investigate the role of various nonmetallic fillers in particulate reinforced mold material composites. We have adopted NSGA-II to optimize the conflicting objectives—maximization of thermal conductivity and minimization of modulus of elasticity. A recently proposed innovization procedure is used to unveil salient properties associated with the trade-off solutions. The obtained Pareto fronts are used successfully to study the role of various parameters influencing the equivalent thermal conductivity and modulus of elasticity of the composite mold material. The optimal selection of materials is suggested in consideration with the cost implication factor based on the findings through investigations.

[1]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[2]  Ricardo Landa Becerra,et al.  Evolutionary Multiobjective Optimization in Materials Science and Engineering , 2009 .

[3]  D. Sundstrom,et al.  Thermal Conductivity of Reinforced Plastics , 1970 .

[4]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[5]  Jason M. Keith,et al.  Thermal conductivity models for carbon/liquid crystal polymer composites , 2007 .

[6]  Roland Keunings,et al.  Prediction of thermo-mechanical properties for compression moulded composites , 1998 .

[7]  Takeo Ozawa,et al.  Thermal conductivity and heat capacity of ABS resin composites , 1997 .

[8]  E. Jenkins,et al.  Design Analysis of Polymer Filtration using a Multi‐Objective Genetic Algorithm , 2008 .

[9]  W. Paszkowicz Genetic Algorithms, a Nature-Inspired Tool: Survey of Applications in Materials Science and Related Fields , 2009 .

[10]  Maria Isabel Felisberti,et al.  Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC , 2004 .

[11]  Xuehong Lu,et al.  Thermal conductivity of boron nitride‐filled thermoplastics: Effect of filler characteristics and composite processing conditions , 2005 .

[12]  B. Weidenfeller,et al.  Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .

[13]  ScienceDirect Composites. Part A, Applied science and manufacturing , 1996 .

[14]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[15]  D. Chung,et al.  Thermally conducting aluminum nitride polymer-matrix composites , 2001 .

[16]  Li Wang,et al.  Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber , 2008 .

[17]  Siby Varghese,et al.  Aluminum powder filled nitrile rubber composites , 2004 .

[18]  Tatsuo Tanaka,et al.  Porosity estimation for random packings of spherical particles , 1984 .

[19]  Laurent Ibos,et al.  Thermophysical properties of polypropylene/aluminum composites , 2004 .

[20]  Nirupam Chakraborti,et al.  Genetic Algorithms in Optimization of Strength and Ductility of Low-Carbon Steels , 2007 .

[21]  El-Ghazali Talbi,et al.  An Analysis of the Effect of Multiple Layers in the Multi-Objective Design of Conducting Polymer Composites , 2009 .

[22]  Ajay K. Ray,et al.  Applications of Genetic Algorithm in Polymer Science and Engineering , 2003 .

[23]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[24]  J. Philip,et al.  Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites , 2008 .

[25]  T. Allen Particle Size Measurement. 2nd ed , 1976 .

[26]  Richa Agrawal,et al.  Effective thermal conductivity of three‐phase styrene butadiene composites , 2000 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  G. Mills,et al.  Particle-size Measurement , 1948, Nature.

[29]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[30]  C. Constantino,et al.  Study of the thermomechanical and electrical properties of conducting composites containing natural rubber and carbon black , 2005, 2005 12th International Symposium on Electrets.

[31]  Andrzej Rosochowski,et al.  Rapid tooling: the state of the art , 2000 .

[32]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[33]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[34]  M. Razzaq,et al.  Thermomechanical studies of aluminum nitride filled shape memory polymer composites , 2007 .

[35]  P. Pissis,et al.  Electrical and thermal conductivity of polymers filled with metal powders , 2002 .

[36]  Jason M. Keith,et al.  Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites , 2006 .

[37]  Shubhabrata Datta,et al.  Effective properties of particle reinforced polymeric mould material towards reducing cooling time in soft tooling process , 2012 .

[38]  Aibing Yu,et al.  Evaluation of the packing characteristics of mono-sized non-spherical particles , 1996 .

[39]  Muhammad Ishaq,et al.  The effect of filler concentration on the electrical, thermal, and mechanical properties of carbon particle and carbon fiber-reinforced poly(styrene-co-acrylonitrile) composites , 2007 .

[40]  Kishalay Mitra,et al.  Genetic algorithms in polymeric material production, design, processing and other applications: a review , 2008 .

[41]  Ching-Ping Wong,et al.  Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging , 1999 .

[42]  Gao Jun,et al.  Mechanical and rheological properties of HDPE/graphite composite with enhanced thermal conductivity , 2001 .

[43]  Randall M. German,et al.  Particle packing characteristics , 1989 .

[44]  Nirupam Chakraborti,et al.  Genetic algorithms in materials design and processing , 2004 .