Efficient Compression of Wavelet Coefficients for Smooth and Fractal-like Data

The authors show how to integrate wavelet-based and fractal-based approaches for data compression. If the data is self-similar or smooth, one can efficiently store its wavelet coefficients using fractal compression techniques resulting in high compression ratios. >

[1]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  Karel Culik,et al.  Finite Automata Computing Real Functions , 1994, SIAM J. Comput..

[4]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[5]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[6]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[7]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[8]  Jarkko Kari,et al.  Image Compression Using Weighted Finite Automata , 1993, MFCS.

[9]  Karel Culik,et al.  Encoding Images as Words and Languages , 1993, Int. J. Algebra Comput..

[10]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[11]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yuval Fisher Fractal Image Compression , 1994 .