Determining penetration from topside weld bead and weld pool geometry in PGMAW

Abstract Finding suitable characteristic parameters of topside weld pool to reflect the penetration is a key work in weld shape control. In this paper, by analysing the molten metal volume, the relationship between topside weld bead shape and penetration in pulsed gas metal arc welding (PGMAW) is revealed, and then several weld bead characteristic parameters (WBCPs) are proposed to determine the penetration. However, these WBCPs are difficult to be obtained in real time, because continuous solidifying of weld pool forms the weld bead, and the WBCPs can be reflected by the weld pool geometry. Therefore, some weld pool characteristic parameters (WPCPs) are proposed to replace the WBCPs. Furthermore, a visual system is established and a series of image processing arithmetics are developed to extract the WPCPs.

[1]  Hiroyuki Kokawa,et al.  Microstructural evolution of 6063 aluminum during friction-stir welding , 1999 .

[2]  Lawrence E Murr,et al.  Microstructural aspects of the friction-stir welding of 6061-T6 aluminum , 1997 .

[3]  H. Kokawa,et al.  Retention of fine grained microstructure of equal channel angular pressed aluminum alloy 1050 by friction stir welding , 2001 .

[4]  Hiroyuki Kokawa,et al.  Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063 , 2002 .

[5]  S. L. Semiatin,et al.  Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys , 2000 .

[6]  Kumar V. Jata,et al.  Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451 , 2000 .

[7]  H. Kokawa,et al.  Recovery retardation in equal channel angular pressed Al-Zr alloy during friction stir welding , 2002 .

[8]  M. W. Mahoney,et al.  Properties of friction-stir-welded 7075 T651 aluminum , 1998 .

[9]  K. K. Sankaran,et al.  Corrosion-fatigue crack growth in friction stir welded Al 7050 , 2001 .

[10]  Lawrence E Murr,et al.  A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium , 1998 .

[11]  J. Wert,et al.  Microstructures of friction stir weld joints between an aluminium-base metal matrix composite and a monolithic aluminium alloy , 2003 .

[12]  E. Starke,et al.  Intergranular fracture of Al–Li–Cu–Mg alloy resulting from non-equilibrium eutectic melting during solution treatment , 1989 .

[13]  Michael A. Sutton,et al.  Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds: Part I. Metallurgical Studies , 2004 .

[14]  K. Jata,et al.  Friction Stir Welding of High Strength Aluminum Alloys , 2000 .

[15]  P. Prangnell,et al.  Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment , 2003 .

[16]  Murray W. Mahoney,et al.  Effects of friction stir welding on microstructure of 7075 aluminum , 1997 .

[17]  W. M. Thomas,et al.  Friction stir process welds aluminium alloys : The process produces low-distortion, high-quality, low-cost welds on aluminium , 1996 .

[18]  Michael A. Sutton,et al.  Mixed mode I/II fracture of 2024-T3 friction stir welds , 2003 .

[19]  S. Park,et al.  Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys , 2001 .

[20]  Michael A. Sutton,et al.  Banded Microstructure in 2024-T351 and 2524-T351 Aluminum Friction Stir Welds: Part II. Mechanical Characterization , 2004 .

[21]  Rajiv S. Mishra,et al.  Microstructural investigation of friction stir welded 7050-T651 aluminium , 2003 .

[22]  A. Reynolds,et al.  Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds , 2005 .

[23]  P. Prangnell,et al.  High Resolution EBSD Analysis of the Grain Structure in an AA2024 Friction Stir Weld , 2000 .

[24]  H. Kokawa,et al.  Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum , 2001 .